The interest in biodegradable polymers for clinical and biomedical engineering applications has seen a dramatic increase in the last 10 years. Recent innovations include bioresorbable polymeric stents (BPS), which are temporary vascular scaffolds designed to restore patency and provide short-term support to a blocked blood vessel, before becoming naturally resorbed over time. BPS offer possibilities to overcome the long-term complications often observed with the permanent metallic stents, well established in the treatment of coronary and peripheral artery disease. From the perspective of designing next generation BPS, the bulk degradation behavior of the polymer material adds considerable complications. Computational modeling offers an efficient framework to predict and provide understanding into the behavior of medical devices and implants. Current computational modeling techniques for the degradation of BPS are either phenomenologically or physically based. In this work, a physically based polymer degradation model is implemented into a number of different computational frameworks to investigate the degradation of a number of polymeric structures. A thermal analogy is presented to implement the degradation model into the commercially available finite-element code, abaqus/standard. This approach is then applied to the degradation of BPS, and the effects of material, boundary condition, and design on the degradation rates of the stents are examined. The results indicate that there is a notable difference in the molecular weight trends predicted for the different materials and boundary condition assumptions investigated, with autocatalysis emerging as a dominant mechanism controlling the degradation behavior. Insights into the scaffolding ability of the various BPS examined are then obtained using a suggested general relationship between Young's modulus and molecular weight.

References

1.
Nair
,
L. S.
, and
Laurencin
,
C. T.
,
2007
, “
Biodegradable Polymers as Biomaterials
,”
Prog. Polym. Sci.
,
32
(
8
), pp.
762
798
.
2.
Ficek
,
K.
,
Filipek
,
J.
,
Wojciechowski
,
P.
,
Kopec
,
K.
,
Ewa
,
S.-Z.
, and
Blazewicz
,
S.
,
2015
, “
A Bioresorbable Polylactide Implant Used in Bone Cyst Filling
,”
J. Mater. Sci. Mater. Med.
,
27
(
2
), pp.
1
8
.
3.
Middleton
,
J. C.
, and
Tipton
,
A. J.
,
2000
, “
Synthetic Biodegradable Polymers as Orthopedic Devices
,”
Biomaterials.
,
21
(
23
), pp.
2335
2346
.
4.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
5.
Dhandayuthapani
,
B.
,
Yoshida
,
Y.
,
Maekawa
,
T.
, and
Kumar
,
D. S.
,
2011
, “
Polymeric Scaffolds in Tissue Engineering Application: A Review
,”
Int. J. Polym. Sci.
,
2011
, p. 290602.
6.
Patel
,
H.
,
Bonde
,
M.
, and
Srinivasan
,
G.
,
2011
, “
Biodegradable Polymer Scaffold for Tissue Engineering
,”
Trends Biomater. Artif. Organs
,
25
(
1
), pp.
20
29
.
7.
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Kawashima
,
A.
,
Matsui
,
S.
,
Komori
,
H.
,
Tsuji
,
T.
,
Motohara
,
S.
, and
Uehata
,
H.
,
2000
, “
Initial and 6-Month Results of Biodegradable Poly-l-Lactic Acid Coronary Stents in Humans
,”
Circulation
,
102
(
4
), pp.
399
404
.
8.
Gogas
,
B. D.
,
Farooq
,
V.
,
Onuma
,
Y.
, and
Serruys
,
P. W.
,
2012
, “
The Absorb Bioresorbable Vascular Scaffold: An Evolution or Revolution in Interventional Cardiology
,”
Hell. J. Cardiol.
,
53
(
4
), pp.
301
309
.
9.
Tesfamariam
,
B.
,
2016
, “
Bioresorbable Vascular Scaffolds: Biodegradation, Drug Delivery and Vascular Remodeling
,”
Pharmacol. Res.
,
107
, pp.
163
171
.
10.
Lyu
,
S.
, and
Untereker
,
D.
,
2009
, “
Degradability of Polymers for Implantable Biomedical Devices
,”
Int. J. Mol. Sci.
,
10
(
9
), pp.
4033
4065
.
11.
Grizzi
,
I.
,
Garreau
,
H.
,
Li
,
S.
, and
Vert
,
M.
,
1995
, “
Hydrolytic Degradation of Devices Based on Poly(dl-Lactic Acid) Size-Dependence
,”
Biomaterials
,
16
(
4
), pp.
305
311
.
12.
Siparsky
,
G.
,
Voorhees
,
K.
, and
Miao
,
F.
,
1998
, “
Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis
,”
J. Environ. Polym. Degrad.
,
6
(
1
), pp.
31
41
.
13.
Shirazi
,
R. N.
,
Ronan
,
W.
,
Rochev
,
Y.
, and
McHugh
,
P.
,
2016
, “
Modelling the Degradation and Elastic Properties of Poly (Lactic-Co-Glycolic Acid) Films and Regular Open-Cell Tissue Engineering Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
48
59
.
14.
Boland
,
E.
,
Shine
,
R.
,
Kelly
,
N.
,
Sweeney
,
C.
, and
McHugh
,
P.
,
2015
, “
A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents
,”
Ann. Biomed. Eng.
,
44
(2), p. 341.
15.
da Silva Soares
,
J. F.
,
2008
, “
Constitutive Modeling for Biodegradable Polymers for Application in Endovascular Stents
,”
Ph.D. dissertation
, Texas A&M University, College Station, TX.
16.
Soares
,
J. S.
,
Moore
,
J. E.
, and
Rajagopal
,
K. R.
,
2010
, “
Modeling of Deformation-Accelerated Breakdown of Polylactic Acid Biodegradable Stents
,”
ASME J. Med. Devices
,
4
(
4
), p.
41007
.
17.
Hayman
,
D.
,
Bergerson
,
C.
,
Miller
,
S.
,
Moreno
,
M.
, and
Moore
,
J. E.
,
2014
, “
The Effect of Static and Dynamic Loading on Degradation of PLLA Stent Fibers
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
4027614
.
18.
Prabhu
,
S.
, and
Hossainy
,
S.
,
2007
, “
Modeling of Degradation and Drug Release From a Biodegradable Stent Coating
,”
J. Biomed. Mater. Res. A
,
80
(
3
), pp.
732
741
.
19.
Shazly
,
T.
,
Kolachalama
,
V. B.
,
Ferdous
,
J.
,
Oberhauser
,
J. P.
,
Hossainy
,
S.
, and
Edelman
,
E. R.
,
2012
, “
Assessment of Material By-Product Fate From Bioresorbable Vascular Scaffolds
,”
Ann. Biomed. Eng.
,
40
(
4
), pp.
955
965
.
20.
Ferdous
,
J.
,
Kolachalama
,
V. B.
, and
Shazly
,
T.
,
2013
, “
Impact of Polymer Structure and Composition on Fully Resorbable Endovascular Scaffold Performance
,”
Acta Biomater.
,
9
(
4
), pp.
6052
6061
.
21.
Wang
,
Y.
,
Pan
,
J.
,
Han
,
X.
,
Sinka
,
C.
, and
Ding
,
L.
,
2008
, “
A Phenomenological Model for the Degradation of Biodegradable Polymers
,”
Biomaterials
,
29
(
23
), pp.
3393
3401
.
22.
SuPing
,
Schley
,
J.
,
Loy
,
B.
,
Lind
,
D.
,
Hobot
,
C.
,
Sparer
,
R.
, and
Untereker
,
D.
,
2007
, “
Kinetics and Time−Temperature Equivalence of Polymer Degradation
,”
Biomacromolecules
,
8
(
7
), pp.
2301
2310
.
23.
Han
,
X.
,
Pan
,
J.
,
Buchanan
,
F.
,
Weir
,
N.
, and
Farrar
,
D.
,
2010
, “
Analysis of Degradation Data of Poly(l-Lactide-Co-l,D-Lactide) and Poly(L-Lactide) Obtained at Elevated and Physiological Temperatures Using Mathematical Models
,”
Acta Biomater.
,
6
(
10
), pp.
3882
3889
.
24.
Siepmann
,
J.
, and
Gopferich
,
A.
,
2001
, “
Mathematical Modeling of Bioerodible, Polymeric Drug Delivery Systems
,”
Adv. Drug Delivery Rev.
,
48
(
2–3
), pp.
229
247
.
25.
Wang
,
Y.
,
Han
,
X.
,
Pan
,
J.
, and
Sinka
,
C.
,
2010
, “
An Entropy Spring Model for the Young's Modulus Change of Biodegradable Polymers During Biodegradation
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
14
21
.
26.
Shirazi
,
R. N.
,
Aldabbagh
,
F.
,
Erxleben
,
A.
,
Rochev
,
Y.
, and
McHugh
,
P.
,
2014
, “
Nanomechanical Properties of Poly(Lactic-Co-Glycolic) Acid Film During Degradation
,”
Acta Biomater.
,
10
(
11
), pp.
4695
4703
.
27.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
, and
Dickson
,
G. R.
,
2004
, “
Degradation of Poly-L-Lactide—Part 1: In Vitro and In Vivo Physiological Temperature Degradation
,”
Proc. Inst. Mech. Eng. H
,
218
(
5
), pp.
307
319
.
28.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Yoon
,
K.-B.
,
2010
, “
Coupled Analysis of Hydrogen Transport Using ABAQUS
,”
J. Solid Mech. Mater. Eng.
,
4
(
7
), pp.
908
917
.
29.
DS SIMULIA,
2010
, “Abaqus/Standard Theory Manual, Version 6.14,” Dassault Systemes Simulia Corporation, Providence, RI.
30.
Gleadall
,
A. C.
,
2015
, “
Modelling Degradation of Biodegradable Polymers and Their Mechanical Properties
,”
Ph.D. thesis
, Department of Engineering, University of Leicester, Leicester, UK.
31.
Manavitehrani
,
I.
,
Fathi
,
A.
,
Badr
,
H.
,
Daly
,
S.
,
Negahi Shirazi
,
A.
, and
Dehghani
,
F.
,
2016
, “
Biomedical Applications of Biodegradable Polyesters
,”
Polymer
,
8
(
1
), p.
20
32.
Hermawan
,
H.
,
Dubé
,
D.
, and
Mantovani
,
D.
,
2010
, “
Developments in Metallic Biodegradable Stents
,”
Acta Biomater.
,
6
(
5
), pp.
1693
1697
.
33.
Schwartz
,
R. S.
,
Chronos
,
N. A.
, and
Virmani
,
R.
,
2004
, “
Preclinical Restenosis Models and Drug-Eluting Stents: Still Important, Still Much to Learn
,”
J. Am. Coll. Cardiol.
,
44
(
7
), pp.
1373
1385
.
34.
Dunne
,
M.
,
Corrigan
,
I.
, and
Ramtoola
,
Z.
,
2000
, “
Influence of Particle Size and Dissolution Conditions on the Degradation Properties of Polylactide-Co-Glycolide Particles
,”
Biomaterials
,
21
(
16
), pp.
1659
1668
.
35.
Grayson
,
A. C. R.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2005
, “
Size and Temperature Effects on Poly(Lactic-Co-Glycolic Acid) Degradation and Microreservoir Device Performance
,”
Biomaterials
,
26
(
14
), pp.
2137
2145
.
36.
Gleadall
,
A.
,
Pan
,
J.
,
Kruft
,
M. A.
, and
Kellomaki
,
M.
,
2014
, “
Degradation Mechanisms of Bioresorbable Polyesters—Part 1: Effects of Random Scission, End Scission and Autocatalysis
,”
Acta Biomater.
,
10
(
5
), pp.
2223
2232
.
37.
Gleadall
,
A.
,
Pan
,
J.
,
Kruft
,
M. A.
, and
Kellomaki
,
M.
,
2014
, “
Degradation Mechanisms of Bioresorbable Polyesters—Part 2: Effects of Initial Molecular Weight and Residual Monomer
,”
Acta Biomater.
,
10
(
5
), pp.
2233
2240
.
38.
Han
,
X.
, and
Pan
,
J.
,
2011
, “
Polymer Chain Scission, Oligomer Production and Diffusion: A Two-Scale Model for Degradation of Bioresorbable Polyesters
,”
Acta Biomater.
,
7
(
2
), pp.
538
547
.
39.
Gleadall
,
A.
,
Pan
,
J.
, and
Atkinson
,
H.
,
2012
, “
A Simplified Theory of Crystallisation Induced by Polymer Chain Scissions for Biodegradable Polyesters
,”
Polym. Degrad. Stab.
,
97
(
9
), pp.
1616
1620
.
40.
Han
,
X.
, and
Pan
,
J.
,
2009
, “
A Model for Simultaneous Crystallisation and Biodegradation of Biodegradable Polymers
,”
Biomaterials
,
30
(
3
), pp.
423
430
.
You do not currently have access to this content.