In order to evaluate the performance of stents used in transcatheter aortic valve implantation (TAVI), finite element simulations are setup to reconstruct patient-specific contact forces between implant and its surrounding tissue. Previous work used structural beam elements to setup a numerical model of the CoreValve stent used in TAVI and developed a procedure for implementing kinematic boundary conditions from noisy computer tomography (CT) scanning data. This study evaluates element size selection and quantitatively investigates the choice of a linear elastic constitutive model for the Nitinol stent under physiological loading conditions. It is shown that this simplification leads to reliable results and enables a huge reduction in computation time. Further, the procedure used to compensate for noisy postoperative CT data is tested by adding artificial noise. It is concluded that for physiologically relevant loading ranges, the procedure yields convergent results and successfully eliminates the influence of the noise.

References

1.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
New Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.
2.
Cribier
,
A.
,
Eltchaninoff
,
H.
,
Bash
,
A.
,
Borenstein
,
N.
,
Tron
,
C.
,
Bauer
,
F.
,
Derumeaux
,
G.
,
Anselme
,
F.
,
Laborde
,
F.
, and
Leon
,
M. B.
,
2002
, “
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis First Human Case Description
,”
Circulation
,
106
(
24
), pp.
3006
3008
.
3.
Padala
,
M.
,
Sarin
,
E. L.
,
Willis
,
P.
,
Babaliaros
,
V.
,
Block
,
P.
,
Guyton
,
R. A.
, and
Thourani
,
V. H.
,
2010
, “
An Engineering Review of Transcatheter Aortic Valve Technologies
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
77
87
.
4.
Edwards,
2014
, “Welcome to Edwards Lifesciences,” Edwards, Irvine, CA, accessed May 8, 2016, www.Edwards.com
5.
Medtronic,
2014
, “From Collaboration to Case Studies, Medtronic is Changing How the World Delivers Patient Care,” Medtronic, Minneapolis, MN, accessed May 8, 2016, www.Medtronic.com
6.
Hopf
,
R.
,
Gessat
,
M.
,
Falk
,
V.
, and
Mazza
,
E.
,
2011
, “
Reconstruction of Stent Induced Loading Forces on the Aortic Valve Complex
,”
Medical Image Computing and Computer Assisted Intervention Society
(
MICCAI-STENT'12
), Nice, France, Oct. 1, pp. 104–111.
7.
Gessat
,
M.
,
Hopf
,
R.
,
Pollok
,
T.
,
Russ
,
C.
,
Frauenfelder
,
T.
,
Sundermann
,
S.
,
Hirsch
,
S.
,
Mazza
,
E.
,
Székely
,
G.
, and
Falk
,
V.
,
2014
, “
Image-Based Mechanical Analysis of Stent Deformation—Concept and Exemplary Implementation for Tavi Stents
,”
IEEE Trans. Biomed. Eng.
,
61
(
1
), pp.
4
15
.
8.
Russ
,
C.
,
Hopf
,
R.
,
Sündermann
,
S. H.
,
Born
,
S.
,
Hirsch
,
S.
,
Falk
,
V.
,
Székely
,
G.
, and
Gessat
,
M.
,
2014
,
Computational Stent Placement in Transcatheter Aortic Valve Implantation
(Lecture Notes in Computer Science), Vol.
8789
, IEEE, Osaka, Japan, pp.
95
105
.
9.
Morganti
,
S.
,
Brambilla
,
N.
,
Petronio
,
A.
,
Reali
,
A.
,
Bedogni
,
F.
, and
Auricchio
,
F.
,
2015
, “
Prediction of Patient-Specific Post-Operative Outcomes of Tavi Procedure: The Impact of the Positioning Strategy on Valve Performance
,”
J. Biomech.
,
49
(
12
), pp.
2513
2519
.
10.
Auricchio
,
F.
,
Conti
,
M.
,
Morganti
,
S.
, and
Reali
,
A.
,
2014
, “
Simulation of Transcatheter Aortic Valve Implantation: A Patient-Specific Finite Element Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
12
), pp.
1347
1357
.
11.
de Jaegere
,
P.
,
De Santis
,
G.
,
Rodriguez-Olivares
,
R.
,
Bosmans
,
J.
,
Bruining
,
N.
,
Dezutter
,
T.
,
Rahhab
,
Z.
,
El Faquir
,
N.
,
Collas
,
V.
,
Bosmans
,
B.
,
Verhegghe
,
B.
,
Ren
,
C.
,
Geleinse
,
M.
,
Schultz
,
C.
,
van Mieghem
,
N.
,
De Beule
,
M.
, and
Mortier
,
P.
,
2016
, “
Patient-Specific Computer Modeling to Predict Aortic Regurgitation After Transcatheter Aortic Valve Replacement
,”
JACC: Cardiovasc. Interventions
,
9
(
5
), pp.
508
512
.
12.
Schultz
,
C.
,
Rodriguez-Olivares
,
R.
,
Bosmans
,
J.
,
Lefevre
,
T.
,
De Santis
,
G.
,
Bruining
,
N.
,
Collas
,
V.
,
Dezutter
,
T.
,
Bosmans
,
B.
,
Rahhab
,
Z.
,
El Faquir
,
N.
,
Watanabe
,
Y.
,
Segers
,
P.
,
Verhegghe
,
B.
,
Chevalier
,
B.
,
van Mieghem
,
N.
,
De Beule
,
M.
,
Mortier
,
P.
, and
De Jaegere
,
P.
,
2016
, “
Patient-Specific Image-Based Computer Simulation for the Prediction of Valve Morphology and Calcium Displacement After Tavi With the Medtronic Corevalve and the Edwards Sapien Valve
,”
EuroIntervention
,
11
(
9
), pp.
1044
1052
.
13.
Wang
,
Q.
,
Sirois
,
E.
, and
Sun
,
W.
,
2012
, “
Patient-Specific Modeling of Biomechanical Interaction in Transcatheter Aortic Valve Deployment
,”
J. Biomech.
,
45
(
11
), pp.
1965
1971
.
14.
Capelli
,
C.
,
Bosi
,
G.
,
Cerri
,
E.
,
Nordmeyer
,
J.
,
Odenwald
,
T.
,
Bonhoeffer
,
P.
,
Migliavacca
,
F.
,
Taylor
,
A.
, and
Schievano
,
S.
,
2012
, “
Patient-Specific Simulations of Transcatheter Aortic Valve Stent Implantation
,”
Med. Biol. Eng. Comput.
,
50
(
2
), pp.
183
192
.
15.
Morganti
,
S.
,
Conti
,
M.
,
Aiello
,
M.
,
Valentini
,
A.
,
Mazzola
,
A.
,
Reali
,
A.
, and
Auricchio
,
F.
,
2014
, “
Simulation of Transcatheter Aortic Valve Implantation Through Patient-Specific Finite Element Analysis: Two Clinical Cases
,”
J. Biomech.
,
47
(
11
), pp.
2547
2555
.
16.
Tzamtzis
,
S.
,
Viquerat
,
J.
,
Yap
,
J.
,
Mullen
,
M.
, and
Burriesci
,
G.
,
2013
, “
Numerical Analysis of the Radial Force Produced by the Medtronic-Corevalve and Edwards-Sapien After Transcatheter Aortic Valve Implantation (Tavi)
,”
Med. Eng. Phys.
,
35
(
1
), pp.
125
130
.
17.
Schievano
,
S.
,
Capelli
,
C.
,
Cosentino
,
D.
,
Bosi
,
G. M.
, and
Taylor
,
A. M.
,
2011
, “
Finite Element Analysis to Study Percutaneous Heart Valves
,”
Finite Element Analysis-From Biomedical Applications to Industrial Developments
,
D.
Moratal
, ed.,
InTech
,
Rijeka, Croatia
.
18.
De Bock
,
S.
,
Iannaccone
,
F.
,
De Santis
,
G.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Devos
,
D.
,
Vermassen
,
F.
,
Segers
,
P.
, and
Verhegghe
,
B.
,
2012
, “
Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
129
139
.
19.
Hall
,
G. J.
, and
Kasper
,
E. P.
,
2006
, “
Comparison of Element Technologies for Modeling Stent Expansion
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
751
756
.
20.
Born
,
S.
,
Russ
,
C.
,
Sündermann
,
S. H.
,
Simon
,
H.
,
Hopf
,
R.
,
Ruiz
,
Carlos
,
E.
,
Falk
,
V.
, and
Gessat
,
M.
,
2014
, “
Stent Maps—Comparative Visualization for the Prediction of Adverse Events of Transcatheter Aortic Valve Implantations
,”
IEEE Trans. Visualization Comput. Graphics
,
20
(
12
), pp.
2704
2713
.
21.
van Rossum
,
G.
,
2015
, “
Intuitive Interpretation
,” Python, Melbourne, FL, accessed Feb. 12, 2016, www.Python.org
22.
The MathWorks
,
1994
–2015, “
MATLAB R2015b Documentation
,” The MathWorks, Natick, MA, accessed Apr. 13, 2017, https://www.mathworks.com
23.
Auricchio
,
F.
, and
Taylor
,
R. L.
,
1997
, “
Shape-Memory Alloys: Modelling and Numerical Simulations of the Finite-Strain Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
143
(
1–2
), pp.
175
194
.
You do not currently have access to this content.