An ankle–foot prosthesis designed to mimic the missing physiological limb generates a large sagittal moment during push off which must be transferred to the residual limb through the socket connection. The large moment is correlated with high internal socket pressures that are often a source of discomfort for the person with amputation, limiting prosthesis use. In this paper, the concept of active alignment is developed. Active alignment realigns the affected residual limb toward the center of pressure (CoP) during stance. During gait, the prosthesis configuration changes to shorten the moment arm between the ground reaction force (GRF) and the residual limb. This reduces the peak moment transferred through the socket interface during late stance. A tethered robotic ankle prosthesis has been developed, and evaluation results are presented for active alignment during normal walking in a laboratory setting. Preliminary testing was performed with a subject without amputation walking with able-bodied adapters at a constant speed. The results show a 33% reduction in the peak resultant moment transferred at the socket limb interface.

References

1.
Pitkin
,
M. R.
,
2010
,
Biomechanics of Lower Limb Prosthetics
,
Springer
,
Berlin
.
2.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.
3.
Struyf
,
P. A.
,
van Heugten
,
C. M.
,
Hitters
,
M. W.
, and
Smeets
,
R. J.
,
2009
, “
The Prevalence of Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees
,”
Arch. Phys. Med. Rehabil.
,
90
(
3
), pp.
440
446
.
4.
Hammarlund
,
C. S.
,
Carlström
,
M.
,
Melchior
,
R.
, and
Persson
,
B. M.
,
2011
, “
Prevalence of Back Pain, Its Effect on Functional Ability and Health-Related Quality of Life in Lower Limb Amputees Secondary to Trauma or Tumour: A Comparison Across Three Levels of Amputation
,”
Prosthet. Orthot. Int.
,
35
(
1
), pp.
97
105
.
5.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Dev.
,
45
(
1
), pp.
15
29
.
6.
Johnson
,
V. J.
,
Kondziela
,
S.
, and
Gottschalk
,
F.
,
1995
, “
Pre and Post-Amputation Mobility of Trans-Tibial Amputees: Correlation to Medical Problems, Age and Mortality
,”
Prosthet. Orthot. Int.
,
19
(
3
), pp.
159
164
.
7.
Au
,
S. K.
, and
Herr
,
H. M.
,
2008
, “
Powered Ankle–Foot Prosthesis
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
52
59
.
8.
Bergelin
,
B. J.
, and
Voglewede
,
P. A.
,
2012
, “
Design of an Active Ankle–Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061004
.
9.
Sun
,
J.
, and
Voglewede
,
P. A.
,
2013
, “
Powered Transtibial Prosthetic Device Control System Design, Implementation, and Bench Testing
,”
ASME J. Med. Devices
,
8
(
1
), p.
011004
.
10.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2003
, “
Biomechanics and Muscle Coordination of Human Walking—Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait Posture
,
17
(
1
), pp.
1
17
.
11.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
,
2004
, “
Muscle Force Redistributes Segmental Power for Body Progression During Walking
,”
Gait Posture
,
19
(
2
), pp.
194
205
.
12.
Neptune
,
R. R.
, and
McGowan
,
C. P.
,
2011
, “
Muscle Contributions to Whole-Body Sagittal Plane Angular Momentum During Walking
,”
J. Biomech.
,
44
(
1
), pp.
6
12
.
13.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle–Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. B Biol. Sci.
,
279
(
1728
), pp.
457
464
.
14.
D'Andrea
,
S.
,
Wilhelm
,
N.
,
Silverman
,
A. K.
, and
Grabowski
,
A. M.
,
2014
, “
Does Use of a Powered Ankle–Foot Prosthesis Restore Whole-Body Angular Momentum During Walking at Different Speeds?
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3044
3054
.
15.
Radcliffe
,
C. W.
, and
Foort
,
J.
,
1961
, “
The Patellar-Tendon-Bearing Below-Knee Prosthesis
,” Biomechanics Laboratory, University of California, Berkeley, CA.
16.
Kapp
,
S.
, and
Cummings
,
D.
,
2002
,
Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles; Transtibial Amputation: Prosthetic Management
,
American Academy of Orthopedic Surgeons
,
Rosemont, IL
.
17.
Jia
,
X.
,
Zhang
,
M.
, and
Lee
,
W. C. C.
,
2004
, “
Load Transfer Mechanics Between Trans-Tibial Prosthetic Socket and Residual Limb—Dynamic Effects
,”
J. Biomech.
,
37
(
9
), pp.
1371
1377
.
18.
Seelen
,
H. A. M.
,
Anemaat
,
S.
,
Janssen
,
H. M. H.
, and
Deckers
,
J. H. M.
,
2003
, “
Effects of Prosthesis Alignment on Pressure Distribution at the Stump/Socket Interface in Transtibial Amputees During Unsupported Stance and Gait
,”
Clin. Rehabil.
,
17
(
7
), pp.
787
796
.
19.
Hachisuka
,
K.
,
Dozono
,
K.
,
Ogata
,
H.
,
Ohmine
,
S.
,
Shitama
,
H.
, and
Shinkoda
,
K.
,
1998
, “
Total Surface Bearing Below-Knee Prosthesis: Advantages, Disadvantages, and Clinical Implications
,”
Arch. Phys. Med. Rehabil.
,
79
(
7
), pp.
783
789
.
20.
Selles
,
R. W.
,
Janssens
,
P. J.
,
Jongenengel
,
C. D.
, and
Bussmann
,
J. B.
,
2005
, “
A Randomized Controlled Trial Comparing Functional Outcome and Cost Efficiency of a Total Surface-Bearing Socket Versus a Conventional Patellar Tendon-Bearing Socket in Transtibial Amputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
1
), pp.
154
161
.
21.
Henrot
,
P.
,
Stines
,
J.
,
Walter
,
F.
,
Martinet
,
N.
,
Paysant
,
J.
, and
Blum
,
A.
,
2000
, “
Imaging of the Painful Lower Limb Stump
,”
Radiographics
,
20
, pp.
S219
S235
.
22.
Boone
,
D. A.
,
Kobayashi
,
T.
,
Chou
,
T. G.
,
Arabian
,
A. K.
,
Coleman
,
K. L.
,
Orendurff
,
M. S.
, and
Zhang
,
M.
,
2013
, “
Influence of Malalignment on Socket Reaction Moments During Gait in Amputees With Transtibial Prostheses
,”
Gait Posture
,
37
(
4
), pp.
620
626
.
23.
Hatfield
,
A. G.
, and
Morrison
,
J. D.
,
2001
, “
Polyurethane Gel Liner Usage in the Oxford Prosthetic Service
,”
Prosthet. Orthot. Int.
,
25
(
1
), pp.
41
46
.
24.
Boutwell
,
E.
,
Stine
,
R.
,
Hansen
,
A.
,
Tucker
,
K.
, and
Gard
,
S.
,
2012
, “
Effect of Prosthetic Gel Liner Thickness on Gait Biomechanics and Pressure Distribution Within the Transtibial Socket
,”
J. Rehabil. Res. Dev.
,
49
(
2
), pp.
227
240
.
25.
LaPre
,
A. K.
,
Umberger
,
B. R.
, and
Sup
,
F.
,
2014
, “
Simulation of a Powered Ankle Prosthesis With Dynamic Joint Alignment
,”
36th Annual International Conference on Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
1618
1621
.
26.
LaPre
,
A. K.
, and
Sup
,
F.
,
2013
, “
Redefining Prosthetic Ankle Mechanics: Non-Anthropomorphic Ankle Design
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.
27.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.
28.
Hang
,
C. C.
,
Åstroüm
,
K. J.
, and
Ho
,
W. K.
,
1991
, “
Refinements of the Ziegler–Nichols Tuning Formula
,”
IEEE Proc. D Control Theory Appl.
,
138
(
2
), pp.
111
118
.
29.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2014
, “
A Universal Ankle–Foot Prosthesis Emulator for Human Locomotion Experiments
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
035002
.
30.
Varol
,
H. A.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2010
, “
Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
542
551
.
31.
Shultz
,
A. H.
,
Mitchell
,
J. E.
,
Truex
,
D.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2013
, “
Preliminary Evaluation of a Walking Controller for a Powered Ankle Prosthesis
,”
IEEE International Conference on Robototics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
4837
4843
.
You do not currently have access to this content.