Continuous flow offers notable advantages over batch processing for analytical applications like gene expression profiling of biological material, which demands very high processing. The technology of choice for future genetic analyzers will most likely use the polymerase chain reaction (PCR); therefore, high-throughput, high-speed PCR devices have raised enormous interest. Continuous-flow, biphasic PCR can meet these requirements but segmenting∕carrier fluids chemically compatible with the PCR are needed. The present paper compares several fluids in terms of compatibility with PCR and fluidic dynamics in a continuous, two-phase flow microfluidic device, and PCR efficiency was assessed quantitatively. The results represent the first step toward rational fluid design for biphasic continuous PCR.

1.
Austin
,
R. H.
, and
Volkmuth
,
W. D.
, 1993, “
Electrophoresis and Microlithography
,”
Analysis
,
21
, pp.
235
238
.
2.
Woolley
,
A. T.
, and
Mathies
,
R. A.
, 1994, “
Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capillary Array Electrophoresis Chips
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
, pp.
11348
11352
.
3.
International Human Genome Sequencing Consortium
, 2001, “
Initial Sequencing and Analysis of the Human Genome
,”
Nature (London)
0028-0836,
409
, pp.
860
921
.
4.
Leamon
,
J. H.
,
Lee
,
W. L.
,
Tartaro
,
K. R.
,
Lanza
,
J. R.
,
Sarkis
,
G. J.
,
deWinter
,
A. D.
,
Berka
,
J.
, and
Lohman
,
K. L.
, 2003, “
A Massively Parallel PicoTiterPlate (TM) Based Platform for Discrete Picoliter-Scale Polymerase Chain Reactions
,”
Electrophoresis
0173-0835,
24
, pp.
3769
3777
.
5.
Nagai
,
H.
,
Murakami
,
Y.
,
Morita
,
Y.
,
Yokoyama
,
K.
, and
Tamiya
,
E.
, 2001, “
Development of a Microchamber Array for Picoliter PCR
,”
Anal. Chem.
0003-2700,
73
, pp.
1043
1047
.
6.
Liu
,
R. H.
,
Yang
,
J.
,
Lenigk
,
R.
,
Bonanno
,
J.
, and
Grodzinski
,
P.
, 2004, “
Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection
,”
Anal. Chem.
0003-2700,
76
, pp.
1824
1831
.
7.
Nagai
,
H.
,
Murakami
,
Y.
,
Yokoyama
,
K.
, and
Tamiya
,
E.
, 2001, “
High-Throughput PCR in Silicon Based Microchamber Array
,”
Biosens. Bioelectron.
0956-5663,
16
, pp.
1015
1019
.
8.
Chaudhari
,
A. M.
,
Woudenberg
,
T. M.
,
Albin
,
M.
, and
Goodson
,
K. E.
, 1998, “
Transient Liquid Crystal Thermometry of Microfabricated PCR Vessel Arrays
,”
J. Microelectromech. Syst.
1057-7157,
7
, pp.
345
355
.
9.
Yang
,
W.
,
Auciello
,
O.
,
Butler
,
J. E.
,
Cai
,
W.
,
Carlisle
,
J. A.
,
Gerbi
,
J. E.
,
Gruen
,
D. M.
,
Knickerbocker
,
T.
,
Lasseter
,
T. L.
,
Russell
,
J. N.
,
Smith
,
L. M.
, and
Hamers
,
R. J.
, 2002, “
DNA-Modified Nanocrystalline Diamond Thin-Films as Stable, Biologically Active Substrates
,”
Nat. Mater.
1476-1122,
1
, pp.
253
257
.
10.
Auroux
,
P. A.
,
Koc
,
Y.
,
de Mello
,
D.
,
Manz
,
A.
, and
Day
,
P. J. R.
, 2004, “
Miniaturized Nucleic Acid Analysis
,”
Lab Chip
1473-0197,
4
, pp.
534
546
.
11.
Panaro
,
N. J.
,
Lou
,
X. J.
,
Fortina
,
P.
,
Kricka
,
L. J.
, and
Wilding
,
P.
, 2004, “
Surface Effects on PCR Reactions in Multichip Microfluidic Platforms
,”
Biomed. Microdevices
1387-2176,
6
, pp.
75
80
.
12.
Shoffner
,
M. A.
,
Cheng
,
J.
,
Hvichia
,
G. E.
,
Kricka
,
J. L.
, and
Wilding
,
P.
, 1996, “
Chip PCR I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR
,”
Nucleic Acids Res.
0305-1048,
24
, pp.
375
379
.
13.
Hjertén
,
S.
, 1985, “
High-Performance Electrophoresis-Elimination of Electroendosmosis and Solute Adsorption
,”
J. Chromatogr.
0021-9673,
347
, pp.
191
198
.
14.
Choi
,
H. G.
,
Zhang
,
Z.
,
Boccazzi
,
P.
,
Laibinis
,
P. E.
,
Sinskey
,
A. J.
, and
Jensen
,
K. F.
, 2003, “
Poly(Ethylene Glycol) (PEG)-Modified Poly-(Dimethylsiloxane) (PDMS) for Protein- And Cell-Resistant Surfaces in Microbioreactor
,”
Micro Total Analysis Systems
,
Squaw Valley, C.A.
.
15.
Shin
,
Y. S.
,
Cho
,
K.
,
Lim
,
S. H.
,
Chung
,
S.
,
Park
,
S. J.
,
Chung
,
C.
,
Han
,
D. C.
, and
Chang
,
J. K.
, 2003, “
PDMS-Based Micro PCR Chip with Parylene Coating
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
768
774
.
16.
Giordano
,
B. C.
,
Copeland
,
E. R.
, and
Landers
,
J. P.
, 2001, “
Towards Dynamic Coating of Glass Microchip Chambers for Amplifying DNA via the Polymerase Chain Reaction
,”
Electrophoresis
0173-0835,
22
, pp.
334
340
.
17.
Burns
,
J. R.
, and
Ramshaw
,
C.
, 2001, “
The Intensification of Rapid Reactions in Multiphase Systems Using Plug Flow in Capillaries
,”
Lab Chip
1473-0197,
1
, pp.
10
15
.
18.
Curcio
,
M.
, and
Roeraade
,
J.
, 2003, “
Continuous Segmented-Flow Polymerase Chain Reaction for High-Throughput Miniaturised DNA Amplification
,”
Anal. Chem.
0003-2700,
75
, pp.
1
7
.
19.
Park
,
N.
,
Kim
,
S.
, and
Han
,
J. H.
, 2003, “
Cylindrical Compact Thermal-Cycling Device for Continuous-Flow Polymerase Chain Reaction
,”
Anal. Chem.
0003-2700,
75
, pp.
6029
6033
.
20.
Jensen
,
K.
, and
Lee
,
A.
, 2004, “
The Science and Applications of Droplets in Microfluidic Devices
,”
Lab Chip
1473-0197,
4
, pp.
31
32
.
21.
Dorfman
,
K. D.
,
Chabert
,
M.
,
Codarbox
,
J. H.
,
Rousseau
,
G.
,
de Cremoux
,
P.
, and
Viovy
,
J. L.
, 2005, “
Contamination-Free Continuous Flow Microfluidic Polymerase Chain Reaction for Quantitative and Clinical Applications
,”
Anal. Chem.
0003-2700,
77
, pp.
3700
3704
.
22.
Walsh
,
E. J.
,
King
,
C.
,
Grimes
,
R.
, and
Gonzalez
,
A.
, 2005, “
Segmenting Fluid Effect on PCR Reactions in Microfluidic Platforms
,”
Biomed. Microdevices
1387-2176,
7
, pp.
269
272
.
23.
Walsh
,
E. J.
,
King
,
C.
,
Grimes
,
R.
, and
Gonzalez
,
A.
, 2006, “
Influence of Segmenting Fluids on Efficiency, Crossing Point and Fluorescence Level in Real Time Quantitative PCR
,”
Biomed. Microdevices
1387-2176,
8
, pp.
59
64
.
24.
Bernard
,
P. S.
, and
Wittwer
,
C. T.
, 2002, “
Real-Time PCR Technology for Cancer Diagnostics
,”
Clin. Chem.
0009-9147,
48
(
8
), pp.
1178
1185
.
25.
Persing
,
D. H.
,
Smith
,
T. F.
,
Tenover
,
F. C.
, and
White
,
T. J.
, 2002,
Diagnostic Molecular Microbiology: Principles and Applications
,
ASM Press
.
26.
Wittwer
,
C. T.
,
Herrmann
,
M. G.
,
Moss
,
A. A.
, and
Rasmussen
,
R. P.
, 1997, “
Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification
,”
BioTechniques
0736-6205,
22
, pp.
130
138
.
27.
Rasmussen
,
R. P.
, 2001, “
Quantification on the Lightcycler
,” in
Rapid Cycle Real-Time PCR: Methods and Applications
,
C. T.
Wittwer
,
S.
Meuer
, and
K.
Nakagawara
, eds.,
Springer
,
Heidelberg
, pp.
21
34
.
28.
Ramakers
,
C.
,
Ruijter
,
J. M.
,
Deprez
,
R. H.
, and
Moorman
,
A. F.
, 2003, “
Assumption-Free Analysis of Quantitative Real-Time Polymerase Chain Reaction (PCR) Data
,”
Neurosci. Lett.
0304-3940,
339
, pp.
62
66
.
29.
Gonzalez
,
A.
,
Ciobanu
,
D.
,
Sayers
,
M.
,
Sirr
,
N.
,
Dalton
,
T.
, and
Davies
,
M.
, 2007, “
Gene Transcript Amplification from Cell Lysates in Continuous-Flow Microfluidic Devices
,”
Biomed. Microdevices
1387-2176,
9
(
5
), pp.
729
736
.
30.
Bejan
,
A.
, 1995,
Convective Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
31.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H.
, 2000, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
809
814
.
32.
Grimes
,
R.
,
King
,
C.
, and
Walsh
,
E.
, 2006, “
Film Thickness for Two Phase Flow in a Microchannel
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exhibition
,
Chicago, IL
, Nov., Paper No. IMECE2006-15882.
You do not currently have access to this content.