Over 7 million Americans suffer from chronic venous insufficiency (CVI), a disease that affects the venous system of the lower extremities. Problems associated with CVI include ulcerations, bleeding, swelling, and varicose veins, as well as deep vein thrombosis and pulmonary embolism. The presence of CVI is the result of incompetent, or malfunctioning, one-way vein valves in leg veins. There are few effective clinical therapies for treating CVI and there are currently no prosthetic vein valves commercially available. The purpose of this study was to define clinically relevant design requirements, develop functional tests for assessing a prosthetic vein valve, and design and fabricate a functional prosthetic vein valve for eventual clinical use. Engineering design methods were used to develop the valve, building a product based on well-defined consumer needs and design specifications. Emphasis was placed on creating a valve with potential clinical functionality. This clinical functionality was distilled into three major design criteria: that the valve (1) withstand backpressure of 300mmHg with less than 1.0mLmin of leakage; (2) open with distal pressure gradients less than 5mmHg; and (3) meet criteria 1 and 2 after 500,000cycles of opening and closing. Hydrostatic testing was conducted to measure the opening pressure and reflux leak rate of the valve. Cyclic life functionality was assessed using a cyclic flow loop simulating physiologic conditions of cyclic flow and pressure found in leg veins. The valve opened with a pressure of 2.6mmHg±0.7mmHg, which matches physiologic vein valve function. The valve also withstood 300mmHg of backpressure with less than 0.5mLmin of leakage, and maintained this performance even after 508,000cycles of opening and closing in simulated physiologic conditions. The valve’s burst pressure was a minimum of 530mmHg±10mmHg, six times greater than physiologic pressure natural vein valves experience. The valve continued to function well in an environment of vein-like tube expansion. The newly designed bi-leaflet prosthetic valve is comprised of a flexible, biocompatible material. Bench test results have shown that the valve is hydrodynamically functional and meets the mechanical design criteria for backpressure competency and opening pressure after 500,000cycles. Finally, the valve can be manufactured easily with low cost.

1.
Taheri
,
S. A.
, and
Schultz
,
R. O.
, 1995, “
Experimental Prosthetic Vein Valve. Long-Term Results
,”
Angiology
0003-3197,
46
(
4
), pp.
299
303
.
2.
Criado
,
E.
, and
Johnson
,
G.
, 1991, “
Chronic Venous Insufficiency
,”
Curr. Probl Surg.
0011-3840,
28
, pp.
335
400
.
3.
Bouissou
,
H.
,
Julian
,
M.
,
Pieraggi
,
M. T.
, and
Louge
,
L.
, 1988, “
Vein Morphology
,”
Phlebologie
0031-8280,
3
(
1
), pp.
1
11
.
4.
Edwards
,
A. E.
, and
Edwards
,
J. E.
, 1937, “
The Effect of Thrombophlebitis on the Venous Valve
,”
Surg. Gynecol. Obstet.
0039-6087,
65
, p.
310
.
5.
Ferris
,
E. B.
, and
Kistner
,
R. L.
, 1982, “
Femoral Vein Reconstruction in the Management of Chronic Venous Insufficiency. A 14‐Year Experience
,”
Arch. Surg. (Chicago)
0004-0010,
117
(
12
), pp.
1571
1579
.
6.
Raju
,
S.
, and
Hardy
,
J. D.
, 1997, “
Technical Options in Venous Valve Reconstruction
,”
Am. J. Surg.
0002-9610,
173
(
4
), pp.
301
307
.
7.
Wilson
,
N. M.
,
Rutt
,
D. L.
, and
Browse
,
N. L.
, 1991, “
Repair and Replacement of Deep Vein Valves in the Treatment of Venous Insufficiency
.”
Br. J. Surg.
0007-1323,
78
(
4
), pp.
388
394
.
8.
Kistner
,
R. L.
,
Eklof
,
B.
, and
Masuda
,
E. M.
, 1995, “
Deep Venous Valve Reconstruction
,”
Cardiovasc. Surg.
0967-2109,
3
(
2
), pp.
129
140
.
9.
Taheri
,
S. A.
,
Lazar
,
L.
,
Elias
,
S. M.
, and
Marchand
,
P.
, 1982, “
Vein Valve Transplant
,”
Surgery (St. Louis)
0039-6060,
91
(
1
), pp.
28
33
.
10.
Akesson
,
H.
,
Risborg
,
B.
, and
Bjorgell
,
O.
, 1998, “
External Support Valvuloplasty in the Treatment of Chronic Deep Vein Incompetence in the Legs
,”
Int. Angiol
0392-9590,
18
, pp.
233
238
.
11.
Hill
,
R.
,
Schmidt
,
S.
,
Evancho
,
M.
,
Hunter
,
T.
,
Hillegass
,
D.
, and
Sharp
,
W.
, 1985, “
Development of a Prosthetic Venous Valve
,”
J. Biomed. Mater. Res.
0021-9304,
19
(
7
), pp.
827
832
.
12.
Gerlock
,
A. J.
, Jr.
,
Phifer
,
T. J.
, and
McDonald
,
J. C.
, 1985, “
Venous Prosthetic Valves. The First Step Toward an Investigation in the Canine Model
,”
Invest. Radiol.
0020-9996,
20
(
1
), pp.
42
44
.
13.
Taheri
,
S. A.
,
Rigan
,
D.
,
Wels
,
P.
,
Mentzer
,
R.
, and
Shores
,
R. M.
, 1988, “
Experimental Prosthetic Vein Valve
,”
Am. J. Surg.
0002-9610,
156
(
2
), pp.
111
114
.
14.
DeLaria
,
G. A.
,
Phifer
,
T.
,
Roy
,
J.
,
Tu
,
R.
,
Thyagarajan
,
K.
, and
Quijano
,
R. C.
, 1993, “
Hemodynamic Evaluation of a Bioprosthetic Venous Prosthesis
,”
J. Vasc. Surg.
0741-5214,
18
(
4
), pp.
577
584
.
15.
Neglen
,
P.
, and
Raju
,
S.
, 2003, “
Venous Reflux Repair with Cryopreserved Vein Valves
,”
J. Vasc. Surg.
0741-5214,
37
(
3
), pp.
552
557
.
16.
Pavcnik
,
D.
,
Uchida
,
B.
,
Timmermans
,
H.
,
Keller
,
F. S.
, and
Rosch
,
J.
, 2001, “
Square Stent: A New Self-Expandable Endoluminal Device and Its Applications
,”
Cardiovasc. Intervent Radiol.
0174-1551,
24
(
4
), pp.
207
217
.
17.
Pavcnik
,
D.
,
Machan
,
L.
,
Uchida
,
B.
,
Kaufman
,
J.
,
Keller
,
F. S.
, and
Rosch
,
J.
, 2003, “
Percutaneous Prosthetic Venous Valves: Current State and Possible Applications
,”
Tech Vasc Interv Radiol
,
6
(
3
), pp.
137
42
.
18.
Pavcnik
,
D.
, 2002, “
Chronic Venous Insufficiency and Bioprosthetic Bicuspid Square Stent Based Venous Valve for Transcatheter Placement
,”
Acta Clin Croat
,
43
, pp.
93
97
.
19.
Labropoulos
,
N.
,
Delis
,
K.
,
Nicolaides
,
A. N.
,
Leon
,
M.
, and
Ramaswami
,
G.
, 1996, “
The Role of the Distribution and Anatomic Extent of Reflux in the Development of Signs and Symptoms in Chronic Venous Insufficiency
,”
J. Vasc. Surg.
0741-5214,
23
(
3
), pp.
504
510
.
20.
Hojensgard
,
I. C.
, and
Sturup
,
H.
, 1952, “
Static and Dynamic Pressures in Superficial and Deep Veins of the Lower Extremity in Man
,”
Acta Physiol. Scand.
0001-6772,
27
(
1
), pp.
49
67
.
21.
Takase
,
S.
,
Pascarella
,
L.
,
Bergan
,
J. J.
, and
Schmid-Schönbein
,
G. W.
, 2004, “
Hypertension-Induced Venous Valve Remodeling
,”
J. Vasc. Surg.
0741-5214,
39
(
6
), pp.
1329
1334
.
22.
Alimi
,
Y. S.
,
Barthelemy
,
P.
, and
Juhan
,
C.
, 1994, “
Venous Pump of the Calf: A Study of Venous and Muscular Pressures
,”
J. Vasc. Surg.
0741-5214,
20
(
5
), pp.
728
735
.
23.
Kugler
,
C.
,
Strunk
,
M.
, and
Rudofsky
,
G.
, 2001, “
Venous Pressure Dynamics of the Healthy Human Leg. Role of Muscle Activity, Joint Mobility and Anthropometric Factors
,”
J. Vasc. Res.
1018-1172,
38
(
1
), pp.
20
29
.
24.
Browse
,
N. L.
,
Burnand
,
K. G.
, and
Lea Thomas
,
M.
, 1988,
Diseases of the Veins
,
E. Arnold
,
London, UK
.
25.
Fronek
,
A.
,
Criqui
,
M. H.
,
Denenberg
,
J.
, and
Langer
,
R. D.
, 2001, “
Common Femoral Vein Dimensions and Hemodynamics Including Valsalva Response as a Function of Sex, Age, and Ethnicity in a Population Study
,”
J. Vasc. Surg.
0741-5214,
33
(
5
), pp.
1050
1056
.
26.
Lurie
,
F.
,
Kistner
,
R. L.
, and
Eklof
,
B.
, 2002, “
The Mechanism of Venous Valve Closure in Normal Physiologic Conditions
,”
J. Vasc. Surg.
0741-5214,
35
(
4
), pp.
713
717
.
27.
Qui
,
Y.
,
Quijano
,
R. C.
,
Wang
,
S. K.
, and
Hwang
,
N. H.
, 1995, “
Fluid Dynamics of Venous Valve Closure
,”
Ann. Biomed. Eng.
0090-6964,
23
(
6
), pp.
750
759
.
28.
Stooker
,
W.
,
Gok
,
M.
,
Sipkema
,
P.
,
Niessen
,
H. W. M.
,
Baidoshvili
,
A.
,
Westerhof
,
N.
,
Jansen
,
E. K.
,
Wildevuur
,
C. R. H.
, and
Eijsman
,
L.
, 2003, “
Pressure-Diameter Relationship in the Human Greater Saphenous Vein
,”
Ann. Thorac. Surg.
0003-4975,
76
(
5
), pp.
1533
1538
.
29.
Wesly
,
R. L.
,
Vaishnav
,
R. N.
,
Fuchs
,
J. C.
,
Patel
,
D. J.
, and
Greenfield
,
J. C.
, Jr.
, 1975, “
Static Linear and Nonlinear Elastic Properties of Normal and Arterialized Venous Tissue in Dog and Man
,”
Circ. Res.
0009-7330,
37
(
4
), pp.
509
520
.
You do not currently have access to this content.