Abstract

Cable-driven hyper-redundant manipulator (CDHM) with flexible and compliant configuration has high maneuverability in a tight space owing to its multiple degrees of freedom (DOFs). However, an increase in the DOFs of the manipulator makes it very challenging to solve its inverse kinematics. The present work proposes a novel adaptive piecewise geometry method to solve the inverse kinematics of the CDHM. The corresponding computation efficiency will be much lower for traditional methods, i.e., the generalized inverse of the Jacobian matrix and artificial neural network method. When the end-effector of the manipulator is required to move with a larger range, Joint angle physical limit needs to be considered and the proposed method can select the optimal arc configuration to solve the inverse kinematics aiming at reducing joint overrun. An adaptive adjustment coefficient is further introduced to optimize the double-arc configuration so that joint motion is more reasonable as well as avoiding singular configuration. The geometry and joint parameters solved with the proposed novel method are then compared to those of the existing method with the same desired target position to verify the effectiveness of the proposed novel method. Finally, a 12-DOFs hyper-redundant manipulator physical prototype is built, and corresponding experimental results show that with the novel solution method, the manipulator end can precisely reach the expected target position with significantly less computational complexity, which is beneficial to improve real-time control efficiency of the CDHM in practical applications.

References

1.
Graham
,
R. A.
, and
Kingston
,
J.
,
2015
, “
Assessment of the Commercial Viability of Selected Options for On-Orbit Servicing (OOS)
,”
Acta Astronaut.
,
117
, pp.
38
48
.
2.
Ju
,
R.
,
Zhang
,
D.
,
Xu
,
J.
,
Yuan
,
H.
,
Miao
,
Z.
,
Zhou
,
M.
, and
Cao
,
Z.
,
2022
, “
Design, Modeling, and Kinematics Analysis of a Modular Cable-Driven Manipulator
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
064501
.
3.
Li
,
C.
, and
Rahn
,
C. D.
,
2002
, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
265
271
.
4.
Xu
,
W.
,
Liu
,
T.
, and
Li
,
Y.
,
2018
, “
Kinematics, Dynamics, and Control of a Cable-Driven Hyper-Redundant Manipulator
,”
IEEE-ASME Trans. Mech.
,
23
(
4
), pp.
1693
1704
.
5.
Genta
,
G.
, and
Dolci
,
M.
,
2016
, “
Robotic Gripper for Payload Capture in Low Earth Orbit
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE), American Society of Mechanical Engineers, 50541
,
Phoenix, AZ
,
Nov. 11–17
, p. V04AT05A063.
6.
Peng
,
J.
,
Xu
,
W.
,
Liu
,
T.
,
Yuan
,
H.
, and
Liang
,
B.
,
2021
, “
End-Effector Pose and Arm-Shape Synchronous Planning Methods of a Hyper-Redundant Manipulator for Spacecraft Repairing
,”
Mech. Mach. Theroy
,
155
, p.
104062
.
7.
Hayashi
,
R.
,
Matunaga
,
S.
, and
Ohkami
,
Y.
,
2000
, “
Capability Evaluation of Reconfigurable Brachiating Space Robot (IECON)
,”
Proceedings of the 2000 26th Annual Conference of the IEEE Industrial Electronics Society, 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies
,
Nagoya, Japan
,
Oct. 22–28
, IEEE, vol. 4, pp.
2461
2466
.
8.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
43
55
.
9.
Ozgoren
,
M. K.
,
2013
, “
Optimal Inverse Kinematic Solutions for Redundant Manipulators by Using Analytical Methods to Minimize Position and Velocity Measures
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031009
.
10.
Boudreau
,
R.
,
Darenfed
,
S.
, and
Gosselin
,
C.
,
1994
, “
Efficient Computation of the Direct Kinematics of Parallel Manipulators Using Polynomial Networks
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Minneapolis, MN
,
Sept. 11–14
, American Society of Mechanical Engineers, 12860.
11.
Giorelli
,
M.
,
Renda
,
F.
,
Ferri
,
G.
, and
Laschi
,
C.
,
2013
, “
A Feed Forward Neural Network for Solving the Inverse Kinetics of Non-Constant Curvature Soft Manipulators Driven by Cables
,”
Proceedings of the Dynamic Systems and Control Conference (DSC)
,
Palo Alto, CA
,
Oct. 21–23
, American Society of Mechanical Engineers, 56147, p. V003T038A001.
12.
Sun
,
C.
,
He
,
W.
,
Ge
,
W.
, and
Chang
,
C.
,
2016
, “
Adaptive Neural Network Control of Biped Robots
,”
IEEE Trans. Syst. Man. CY-S.
,
47
(
2
), pp.
315
326
.
13.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
(
3
), pp.
343
354
.
14.
Wang
,
J.
,
Tang
,
L.
,
Gu
,
G.
, and
Zhu
,
X.
,
2018
, “
Tip Following Path Planning and Its Performance Analysis for Hyper-Redundant Manipulators
,”
J. Mech. Eng.
,
54
(
3
), pp.
18
25
.
15.
Yahya
,
S.
,
Moghavvemi
,
M.
,
Yang
,
S.
, and
Mohamed
,
H. A.
,
2009
, “
Motion Planning of Hyper Redundant Manipulators Based on a New Geometrical Method
,”
Proceedings of the 2009 IEEE International Conference on Industrial Technology (ICIT), IEEE
,
Churchill, VIC, Australia
,
Feb. 10–13
, IEEE, pp.
1
5
.
16.
Colome
,
A.
, and
Torras
,
C.
,
2015
, “
Closed-Loop Inverse Kinematics for Redundant Robots: Comparative Assessment and Two Enhancements
,”
IEEE-ASME Trans. Mech.
,
20
(
2
), pp.
944
955
.
17.
Karpińska
,
J.
, and
Tchoń
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.
18.
Samer
,
Y.
, and
Haider
,
A. M.
,
2011
, “
Redundant Manipulators Kinematics Inversion
,”
Sci. Res. Essays
,
6
(
26
), pp.
5462
5470
.
19.
Xia
,
Y.
, and
Wang
,
J.
,
2001
, “
A Dual Neural Network for Kinematic Control of Redundant Robot Manipulators
,”
IEEE Trans. Syst. Man. CY-S.
,
31
(
1
), pp.
147
154
.
20.
Song
,
S.
,
Li
,
Z.
,
Meng
,
M. Q.-H.
,
Yu
,
H.
, and
Ren
,
H.
,
2015
, “
Real-Time Shape Estimation for Wire-Driven Flexible Robots With Multiple Bending Sections Based on Quadratic Bézier Curves
,”
IEEE Sens. J.
,
15
(
11
), pp.
6326
6334
.
21.
Dubey
,
R. V.
,
Euler
,
J. A.
, and
Babcock
,
S. M.
,
1991
, “
Real-Time Implementation of an Optimization Scheme for Seven-Degree-of-Freedom Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
579
588
.
22.
Li
,
S.
,
Wang
,
Y.
,
Chen
,
Q.
, and
Hu
,
W.
,
2016
, “
A New Geometrical Method for the Inverse Kinematics of the Hyper-Redundant Manipulators
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO), IEEE
,
Kunming, China
,
Dec. 17–20
, IEEE, pp.
1356
1359
.
23.
Aristidou
,
A.
, and
Lasenby
,
J.
,
2011
, “
FABRIK: A Fast, Iterative Solver for the Inverse Kinematics Problem
,”
Graph. Models
,
73
, pp.
243
260
.
24.
Xu
,
W.
,
Zhang
,
J.
,
Liang
,
B.
, and
Li
,
B.
,
2015
, “
Singularity Analysis and Avoidance for Robot Manipulators With Nonspherical Wrists
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
277
290
.
25.
Mohamed
,
H. A.
,
Yahya
,
S.
,
Moghavvemi
,
M.
, and
Yang
,
S.
,
2009
, “
A New Inverse Kinematics Method for Three Dimensional Redundant Manipulators
,”
Proceedings of the 2009 ICCAS-SICE, IEEE
,
Fukuoka, Japan
,
Aug. 18–21
, IEEE, pp.
1557
1562
.
26.
Yahya
,
S.
,
Moghavvemi
,
M.
, and
Mohamed
,
H. A.
,
2011
, “
Geometrical Approach of Planar Hyper-Redundant Manipulators: Inverse Kinematics, Path Planning and Workspace
,”
Simul. Model. Pract. Th.
,
19
(
1
), pp.
406
422
.
27.
Mu
,
Z.
,
Yuan
,
H.
,
Xu
,
W.
,
Liu
,
T.
, and
Liang
,
B.
,
2018
, “
A Segmented Geometry Method for Kinematics and Configuration Planning of Spatial Hyper-Redundant Manipulators
,”
IEEE Trans. Syst. Man. CY-S.
,
50
(
5
), pp.
1746
1756
.
28.
Mu
,
Z.
,
Wang
,
P.
,
Li
,
Z.
, and
Xu
,
W.
,
2019
, “
A Biarc Method for Kinematics and Configuration Planning of Concentric Wire-Driven Manipulators
,”
IEEE Access
,
7
, pp.
151439
151448
.
29.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Education
,
Lexington, MA
.
30.
Cao
,
K.
,
Kang
,
R.
,
Branson III
,
D. T.
,
Geng
,
S.
,
Song
,
Z.
, and
Dai
,
J. S.
,
2017
, “
Workspace Analysis of Tendon-Driven Continuum Robots Based on Mechanical Interference Identification
,”
ASME J. Mech. Des.
,
139
(
6
), p.
062303
.
31.
Guan
,
Y.
, and
Yokoi
,
K.
,
2016
, “
Reachable Space Generation of a Humanoid Robot Using the Monte Carlo Method
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Beijing, China
,
Oct. 9–15
, IEEE, pp.
1984
1989
.
32.
Burgner-Kahrs
,
J.
,
Gilbert
,
H. B.
,
Granna
,
J.
,
Swaney
,
P. J.
, and
Webster
,
R. J.
,
2014
, “
Workspace Characterization for Concentric Tube Continuum Robots
,”
Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
1269
1275
.
You do not currently have access to this content.