Abstract

Redundantly actuated parallel manipulator (RAPM) has been proved to have comparative advantages of higher rigidity and higher payload over other parallel manipulators. This paper is to quantitatively reveal the effect of redundancy on rigidity enhancement of a previously invented 2UPR&1RPS&1RPU RAPM. For this purpose, three critical issues are clarified, i.e., establishing a sufficient accurate stiffness model, constructing a reasonable index frame for evaluating rigidity performance, and quantifying the effect of redundancy on the rigidity enhancement. First, drawing on the screw theory, a hierarchical method is presented to establish a semi-analytic stiffness model at the joint level for the proposed RAPM. Subsequently, based on the stiffness matrix, a set of local and global stiffness indices are constructed to evaluate the rigidity of parallel manipulators. Finally, the stiffness indices of the 2UPR&1RPS&1RPU RAPM and its non-redundantly actuated forms are predicted and compared to reveal the effort of redundancy. The present work is expected to provide a useful frame for quantitatively assessing redundancy-induced rigidity enhancement in redundantly actuated parallel manipulators.

References

1.
Shen
,
X.
,
Xu
,
L.
, and
Li
,
Q.
,
2021
, “
Motion/Force Constraint Indices of Redundantly Actuated Parallel Manipulators With Over Constraints
,”
Mech. Mach. Theory
,
165
, p.
104427
.
2.
Arsenault
,
M.
,
Boudreau
,
R.
, and
Nokleby
,
S.
,
2021
, “
Computation of the Available Force Set of a 3-RPRR Kinematically Redundant Planar Parallel Manipulator
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061014
.
3.
Zhang
,
D.
,
Xu
,
Y.
,
Yao
,
J.
,
Hu
,
B.
, and
Zhao
,
Y.
,
2017
, “
Kinematics, Dynamics and Stiffness Analysis of a Novel 3-DOF Kinematically/Actuation Redundant Planar Parallel Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
203
219
.
4.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Rob. Syst.
,
86
(
2
), pp.
175
198
.
5.
Xie
,
F.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2014
, “
Optimization of a Redundantly Actuated Parallel Kinematic Mechanism for a 5-Degree-of-Freedom Hybrid Machine Tool
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf
,
228
(
12
), pp.
1630
1641
.
6.
Escorcia-Hernández
,
J. M.
,
Chemori
,
A.
,
Aguilar-Sierra
,
H.
, and
Monroy-Anieva
,
J.
,
2020
, “
A New Solution for Machining With RA-PKMs: Modelling, Control and Experiments
,”
Mech. Mach. Theory
,
150
, p.
103864
.
7.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.
8.
Chen
,
J.
,
Xie
,
F.
,
Liu
,
X.
, and
Bi
,
W.
,
2021
, “
Stiffness Evaluation of an Adsorption Robot for Large-Scale Structural Parts Processing
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040907
.
9.
Qiu
,
C.
, and
Dai
,
J.
,
2021
, “
Stiffness Construction and Decomposition of Compliant Parallel Mechanisms
,”
Springer Tra. Adv. Rob.
,
139
, pp.
81
98
.
10.
Chen
,
B.
,
Cui
,
Z.
, and
Jiang
,
H.
,
2018
, “
Producing Negative Active Stiffness in Redundantly Actuated Planar Rotational Parallel Mechanisms
,”
Mech. Mach. Theory
,
128
, pp.
336
348
.
11.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2019
, “
Directional Stiffness Modulation of Parallel Robots With Kinematic Redundancy and Variable Stiffness Joints
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051003
.
12.
Yi
,
B. J.
,
Freeman
,
R. A.
, and
Tesar
,
D.
,
1989
, “
Open-Loop Stiffness Control of Overconstrained Mechanisms/Robotic Linkage Systems
,”
IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, IEEE Computer Society Press, pp.
1340
1345
.
13.
Wu
,
X.
,
Wang
,
Y.
,
Xiang
,
Z.
,
Yan
,
R.
,
Tan
,
R.
, and
Shu
,
R.
,
2021
, “
Stiffness Analysis of a Planar Parallel Manipulator With Variable Platforms
,”
Mech. Based Des. Struct. Mach.
,
49
(
1
), pp.
1
18
.
14.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
15.
Yang
,
C.
,
Li
,
Q.
, and
Chen
,
Q.
,
2020
, “
Analytical Elastostatic Stiffness Modeling of Parallel Manipulators Considering the Compliance of the Link and Joint
,”
Appl. Math. Modell.
,
78
, pp.
322
349
.
16.
Chakarov
,
D.
,
2003
, “
Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,”
Mech. Mach. Theory
,
39
(
6
), pp.
583
601
.
17.
Muller
,
A.
,
2006
, “
Stiffness Control of Redundantly Actuated Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
1153
1158
.
18.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Fidan
,
B.
, and
Rushton
,
M.
,
2017
, “
Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis and Stiffness Optimization
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
921
930
.
19.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Geometric Interpretation of the Derivatives of Parallel Robots’ Jacobian Matrix With Application to Stiffness Control
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
33
42
.
20.
Wang
,
D.
,
Fan
,
R.
, and
Chen
,
W.
,
2014
, “
Performance Enhancement of a Three-Degree-of-Freedom Parallel Tool Head Via Actuation Redundancy
,”
Mech. Mach. Theory
,
71
, pp.
142
162
.
21.
Zhang
,
H.
, and
Fang
,
H.
,
2018
, “
Stiffness Characteristics Analysis of a Novel 3-DOF Parallel Kinematic Machine Tool
,”
Int. J. Eng. Technol.
,
10
(
4
), pp.
346
354
.
22.
Liu
,
H.
,
Huang
,
T.
,
Chetwynd
,
D.
, and
Kecskemethy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
734
741
.
23.
Shin
,
H.
,
Kim
,
S.
,
Jeong
,
J.
, and
Kim
,
J.
,
2012
, “
Stiffness Enhancement of a Redundantly Actuated Parallel Machine Tool by Dual Support Rims
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1539
1547
.
24.
Yang
,
C.
,
Li
,
Q.
,
Chen
,
Q.
, and
Xu
,
L.
,
2018
, “
Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
122
, pp.
58
74
.
25.
Zhang
,
J.
,
Zhao
,
Y.
, and
Jin
,
Y.
,
2016
, “
Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
208
220
.
26.
Tang
,
T.
, and
Zhang
,
J.
,
2019
, “
Conceptual Design and Kinetostatic Analysis of a Modular Parallel Kinematic Machine-Based Hybrid Machine Tool for Large Aeronautic Components
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
1
16
.
27.
Merlet
,
J.
,
2010
,
Parallel Robots
,
Springer
,
Berlin, Germany
, pp.
247
267
.
28.
Courteille
,
E.
,
Deblaise
,
D.
, and
Maurine
,
P.
,
2009
, “
Design Optimization of a Delta-Like Parallel Robot Through Global Stiffness Performance Evaluation
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IRS)
,
St. Louis, MO
,
Oct. 10–15
, pp.
5159
5166
.
29.
Xu
,
Q.
, and
Li
,
Y.
,
2006
, “
GA-Based Architecture Optimization of a 3-PUU Parallel Manipulator for Stiffness Performance
,”
IEEE Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA)
,
Dalian, China
,
June 21–23
, pp.
1
12
.
30.
Liu
,
X.
,
Jin
,
Z.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With Respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
.
31.
Kim
,
H.
, and
Tsai
,
L.
,
2003
, “
Optimization Design of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
43
51
.
32.
Yan
,
S.
,
Ong
,
S.
, and
Nee
,
A.
,
2016
, “
Stiffness Analysis of Parallelogram-Type Parallel Manipulators Using a Strain Energy Method
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
13
22
.
33.
Li
,
Y.
,
Liu
,
H.
,
Zhao
,
X.
, and
Huang
,
T.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
34.
Dong
,
C.
,
Liu
,
H.
,
Yue
,
W.
, and
Huang
,
T.
,
2018
, “
Stiffness Modeling and Analysis of a Novel 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
125
, pp.
80
93
.
35.
Fang
,
H.
,
Tang
,
T.
, and
Zhang
,
J.
, “
Kinematic Analysis and Comparison of a 2R1T Redundantly Actuated Parallel Manipulator and Its Non-Redundantly Actuated Forms
,”
Mech. Mach. Theory
,
142
(
1
), p.
103587
.
36.
Tang
,
T.
,
Fang
,
H.
, and
Zhang
,
J.
,
2020
, “
Hierarchical Design, Laboratory Prototype Fabrication and Machining Tests of a Novel 5-Axis Hybrid Serial-Parallel Kinematic Machine Tool
,”
Rob. Comput. Integr. Manuf.
,
64
, p.
101944
.
37.
Shen
,
N.
,
Geng
,
L.
,
Li
,
J.
,
Ye
,
F.
,
Yu
,
Z.
, and
Wang
,
Z.
,
2020
, “
Improved Stiffness Modeling for an Exechon‐Like Parallel Kinematic Machine (PKM) and Its Application
,”
Chin. J. Mech. Eng.
,
33
, pp.
138
149
.
38.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2013
, “
CAD-Based Approach for Identification of Elasto-Static Parameters of Robotic Manipulators
,”
Finite Elem. Anal. Des.
,
75
, pp.
19
30
.
39.
Lin
,
Q.
,
Burdick
,
J. W.
, and
Rimon
,
E.
,
2000
, “
A Stiffness-Based Quality Measure for Compliant Grasps and Fixtures
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
675
688
.
You do not currently have access to this content.