Robot-assisted minimally invasive surgery (MIS) has shown tremendous advances over the traditional technique. The remote center-of-motion (RCM) mechanism is one of the main components of a MIS robot. However, the widely used planar RCM mechanism, with double parallelogram structure, requires an active prismatic joint to drive the surgical tool move in–out of the patient’s body cavity, which restricts the dexterity and the back-drivability of the robot to some extent. To solve this problem, a two degree-of-freedom (DOF) planar RCM mechanism type synthesis method is proposed. The basic principle is to construct virtual double parallelogram structure at any instant during the mechanism movements. Different with the existing ones, both of the actuated joints of the obtained RCM mechanism are revolute joints. Combining the proposed mechanism with a revolute joint whose axis passes through the RCM point to drive the whole mechanism out of the plane, the spatial RCM mechanisms to manipulate surgical tool in three-dimension (3D) space can be obtained; and the 3D RCM mechanism can be used for manipulating multi-DOF instruments in a robot-assisted MIS or can be used as an external positioner in robotic single-port surgeries.

References

1.
Dai
,
J. S.
,
2010
, “
Editorial: Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(S2), pp.
161
161
.10.1017/S0263574709990877
2.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
, Jr.
,
2000
, “
The Intuitive™ Telesurgery System: Overview and Application
,”
IEEE International Conference on Robotics and Automation
(
ICRA ’00
), San Francisco, CA, April 24–28, pp.
618
621
.10.1109/ROBOT.2000.844121
3.
Nagy
,
I.
,
Mayer
,
H.
,
Knoll
,
A.
,
Schirmbeck
,
E. U.
, and
Bauernschmitt
,
R.
,
2004
, “
The Endo[PA]R System for Minimally Invasive Robotic Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2004
), Sendai, Japan, September 28–October 2, pp.
3637
3642
.10.1109/IROS.2004.1389980
4.
Pisla
,
D.
,
Szilaghyi
,
A.
,
Waida
,
C.
, and
Plitea
,
N.
,
2013
, “
Kinematics and Workspace Modeling of a New Hybrid Robot Used in Minimally Invasive Surgery
,”
Rob. Comput.-Integr. Manuf.
,
29
(
2
), pp.
463
474
.10.1016/j.rcim.2012.09.016
5.
Pisla
,
D.
,
Gherman
,
B.
,
Vaida
,
C.
,
Suciu
,
M.
, and
Plitea
,
N.
,
2013
, “
An Active Hybrid Parallel Robot for Minimally Invasive Surgery
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
203
221
.10.1016/j.rcim.2012.12.004
6.
Gherman
,
B.
,
Pisla
,
D.
,
Vaida
,
C.
, and
Plitea
,
N.
,
2012
, “
Development of Inverse Dynamic Model for a Surgical Hybrid Parallel Robot With Equivalent Lumped Masses
,”
Rob. Comput.-Integr. Manuf.
,
28
(
3
), pp.
402
415
.10.1016/j.rcim.2011.11.003
7.
Ghodoussi
,
M.
,
Butner
,
S. E.
, and
Wang
,
Y. L.
,
2002
, “
Robotic Surgery—The Transatlantic Case
,”
IEEE International Conference on Robotics and Automation
(
ICRA ’02
), Washington DC, May 11–15, pp.
1882
1888
.10.1109/ROBOT.2002.1014815
8.
Locke
,
R. C. O.
, and
Patel
,
R. V.
,
2007
, “
Optimal Remote Center-of-Motion Location for Robotics-Assisted Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
, Rome, April 10–14, pp.
1900
1905
.10.1109/ROBOT.2007.363599
9.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer–Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.10.1109/TRA.2003.817058
10.
Mitsuishi
,
M.
,
Sugita
,
N.
,
Baba
,
S.
,
Takahashi
,
H.
,
Morita
,
A.
,
Sora
,
S.
, and
Mochizuki
,
R.
,
2008
, “
A Neurosurgical Robot for the Deep Surgical Field Characterized by an Offset-Type Forceps and Natural Input Capability
,”
39th International Symposium on Robotics
, Seoul, Korea, October 15–17, pp.
915
920
.
11.
Schena
,
B. M.
,
2008
, “
Mechanically Decoupled Capstan Drive
,” U.S. Patent No. US7391173 B2.
12.
Berkelman
,
P.
, and
Ma
,
J.
,
2006
, “
A Compact, Modular, Teleoperated Robotic Minimally Invasive Surgery System
,”
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
), Pisa, Italy, February 20–22, pp.
702
707
.10.1109/BIOROB.2006.1639172
13.
Zhang
,
X. L.
, and
Nelson
,
C. A.
,
2008
, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Devices
,
2
(
2
), p.
021003
.10.1115/1.2918740
14.
Nabil
,
Z.
, and
Guillaume
,
M.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
143
153
.10.1109/TMECH.2007.892831
15.
Lum
,
M. J. H.
,
Friedman
,
D. C. W.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
, “
The RAVEN: Design and Validation of a Telesurgery System
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1183
1197
.10.1177/0278364909101795
16.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2005
, “
Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1046
1055
.10.1109/TRO.2005.853494
17.
Taylor
,
R. H.
,
Funda
,
J.
,
Eldridge
,
B.
,
Gomory
,
S.
,
Gruben
,
K.
,
LaRose
,
D.
,
Talamini
,
M.
,
Kavoussi
,
L.
, and
Anderson
,
J.
,
1995
, “
A Telerobotic Assistant for Laparoscopic Surgery
,”
Eng. Med. Biol. Mag.
,
14
(
3
), pp.
279
288
.10.1109/51.391776
18.
Nawrat
,
Z.
, and
Kostka
,
P.
,
2006
, “
Polish Cardio-Robot ‘Robin Heart’. System, Description and Technical Evaluation
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
2
, pp.
36
44
.10.1002/rcs.67
19.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
IEEE International Conference on Robotics and Automation
(
ICRA ’02
), Washington DC, May 11–15, pp.
1876
1881
.10.1109/ROBOT.2002.1014814
20.
Taylor
,
R. H.
,
Barnes
,
A.
,
Kumar
,
R.
,
Jensen
,
P.
,
Whitcomb
,
L.
,
Stoianovici
,
D.
,
Gupta
,
P.
,
Wang
,
Z.
,
deJuan
,
E.
, and
Kavoussi
,
L.
,
1999
, “
A Steady-Hand Robotic System for Microsurgical Augmentation
,”
Second International Conference on Medical Image Computing and Computer-Assisted Intervention
, Cambridge, UK, September 19–22, pp.
1031
1041
.10.1007/10704282_112
21.
Nowlin
,
W. C.
,
Guthart
,
G. S.
,
Salisbury
,
J. K.
, and
Niemeyer
,
G. D.
,
2006
, “
Repositioning and Reorientation of Master/Slave Relationship in Minimally Invasive Telesurgery
,” U. S. Patent No. US7087049B2.
22.
Haber
,
G. P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
,
Forest
,
S.
,
Yang
,
B.
,
Altunrende
,
F.
,
Stein
,
R. J.
, and
Kaouk
,
J. H.
,
2010
, “
Novel Robotic da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.10.1016/j.urology.2010.06.070
23.
Hanly
,
E. J.
, and
Talamini
,
M. A.
,
2004
, “
Robotic Abdominal Surgery
,”
Am. J. Surg.
,
188
(4S1), pp.
19S
26S
.10.1016/j.amjsurg.2004.08.020
24.
Zong
,
G. H.
,
Pei
,
X.
,
Yu
,
J. J.
, and
Bi
,
S. S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(12), pp.
1585
1595
.10.1016/j.mechmachtheory.2007.12.008
25.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
, and
He
,
C.
,
2010
, “
Optimization of a Novel Mechanism for a Minimally Invasive Surgery Robot
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
6
(S1), pp.
83
90
.10.1002/rcs.327
26.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
,
He
,
C.
, and
Zhang
,
L. A.
,
2010
, “
Development of a Novel Mechanism for Minimally Invasive Surgery
,”
International Conference on Robotics and Biomimetics
(
ROBIO
), Tianjin, China, December 14–18, pp.
1370
1375
.10.1109/ROBIO.2010.5723529
27.
Beira, R., Santos-Carreras, L., Sengul, A., Samur, E., Clavel, R., and Bleuler, H.,
2011
, “
An External Positioning Mechanism for Robotic Surgery
,”
J. Syst. Des. Dyn.
,
5
(
5
), pp.
1094
1105
.10.1299/jsdd.5.1094
28.
Li
,
J. M.
,
Zhang
,
G. K.
,
Muller
,
A.
, and
Wang
,
S. X.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(9), p.
091009
.10.1115/1.4024848
29.
Huang
,
T.
,
Li
,
Z. X.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(3), pp.
449
455
.10.1115/1.1711822
30.
Liu
,
X. J.
, and
Wang
,
J. S.
,
2003
, “
Some New Parallel Mechanisms Containing the Planar Four-Bar Parallelogram
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
717
732
.10.1177/02783649030229003
31.
Kim
,
J. W.
,
Kim
,
J. H.
,
Kim
,
H. S.
, and
Lee
,
S. H.
,
2007
, “
Design and Control of Two Types of Planar Translational Parallel Manipulators With Parallelogram Mechanisms
,”
International Conference on Control, Automation and Systems
(
ICCAS ’07
), Seoul, Korea, October 17–20, pp.
2274
2277
.10.1109/ICCAS.2007.4406705
32.
Gao
,
F.
,
Li
,
W. M.
,
Zhao
,
X. C.
,
Jin
,
Z. L.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.10.1016/S0094-114X(02)00044-7
You do not currently have access to this content.