Trajectory tracking is accomplished by obtaining separate solutions to the geometric path-tracking problem and the temporal tracking problem. A methodology enabling the geometric tracking of a desired planar or spatial path to any order with a nonredundant manipulator is developed. In contrast to previous work, the equations are developed using one of the manipulator’s joint variables as the independent parameter in a fixed global frame rather than a configuration-dependent canonical frame. Both these features provide significant practical advantages. Furthermore, a strategy for determining joint velocities and accelerations at singular configurations is provided, which allows the manipulator to approach and/or move out of a singular configuration with finite joint velocities without sacrificing the geometric fidelity of tracking. An example shows a spatial six-revolute robot tracking a trajectory using the developed method in conjunction with resolved-acceleration feedback control.

1.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Walker
,
I. A. D.
, 2008,
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer Verlag
,
Western Europe
, Chap. 11, pp.
245
268
.
2.
Spong
,
W. M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
, 2006,
Robot Modeling and Control
,
Wiley
,
New York
.
3.
Caccavale
,
F.
,
Natale
,
C.
,
Siciliano
,
B.
, and
Villani
,
L.
, 1998, “
Resolved-Acceleration Control of Robot Manipulators: A Critical Review With Experiments
,”
Robotica
0263-5747,
16
, pp.
565
573
.
4.
Kieffer
,
J.
, and
Litvin
,
F. L.
, 1991, “
Local Parametric Representation of Displacement Functions for Linkages and Manipulators
,”
Mech. Mach. Theory
0094-114X,
26
(
1
), pp.
41
53
.
5.
Lloyd
,
J.
, 1995, “
Robot Trajectory Generation for Paths With Kinematic Singularities
,” Ph.D. thesis, McGill University, Montreal, Canada.
6.
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1991, “
Control of Robotic Systems Through Singularities
,”
Advanced Robot Control, Vol. 162 of Lecture Notes in Control and Information Sciences
,
Springer
,
Berlin/Heidelberg
, pp.
285
295
.
7.
Wolovich
,
W. A.
, and
Elliot
,
H.
, 1984, “
A Computational Technique for Inverse Kinematics
,”
Proceedings of the 23rd IEEE Conference on Decision and Control
, pp.
1359
1363
.
8.
Wampler
,
C. W.
, II
, and
Leifer
,
L. J.
, 1988, “
Application of Damped Least-Squares Methods to Resolve-Rate and Resolved-Acceleration Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
(
1
), pp.
31
38
.
9.
Nenchev
,
D. N.
,
Tsumaki
,
Y.
, and
Uchiyania
,
M.
, 1996, “
Adjoint Jacobian Closed-Loop Kinematic Control of Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1235
1240
.
10.
Kieffer
,
J.
, 1992, “
Manipulator Inverse Kinematics for Untimed End-Effector Trajectories With Ordinary Singularities
,”
Int. J. Robot. Res.
0278-3649,
11
(
3
), pp.
225
237
.
11.
Lloyd
,
J. E.
, 1998, “
Desingularization of Nonredun-Dant Serial Manipulator Trajectories Using Puiseux Series
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
4
), pp.
590
600
.
12.
Nenchev
,
D. N.
, 1995, “
Tracking Manipulator Trajectories With Ordinary Singularities: A Null Space-Based Approach
,”
Int. J. Robot. Res.
0278-3649,
14
(
4
), pp.
399
404
.
13.
Tumeh
,
Z. S.
, and
Alford
,
C. O.
, 1988, “
Solving for Manipulator Joint Rates in Singular Positions
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
987
992
.
14.
Ghosal
,
A.
, and
Ravani
,
B.
, 2001, “
A Differential-Geometric Analysis of Singularities of Point Trajectories of Serial and Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
123
(
1
), pp.
80
89
.
15.
Lloyd
,
J. E.
, and
Hayward
,
V.
, 2001, “
Singularity-Robust Trajectory Generation
,”
Int. J. Robot. Res.
0278-3649,
20
(
1
), pp.
38
56
.
16.
Atkeson
,
C. G.
, and
Hollerbach
,
J. M.
, 1985, “
Kinematic Features of Unrestrained Vertical Arm Movements
,”
J. Neurosci.
0270-6474,
5
(
9
), pp.
2318
2330
.
17.
Ambike
,
S.
, and
Schmiedeler
,
J. P.
, 2006,
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds.,
Springer
,
Dodrecht
, pp.
177
184
.
18.
Dounskaia
,
N.
, 2005, “
The Internal Model and the Leading Joint Hypothesis: Implications for Control of Multi-Joint Movements
,”
Exp. Brain Res.
0014-4819,
166
(
1
), pp.
1
16
.
19.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North Holland
,
Amsterdam
.
20.
Lorenc
,
S. J.
,
Stanišić
,
M. M.
, and
Hall
,
A. S. J.
, 1995, “
Application of Instantaneous Invariants to the Path Tracking Control Problem of Planar Two Degree-of-Freedom Systems: A Singularity-Free Mapping of Trajectory Geometry
,”
Mech. Mach. Theory
0094-114X,
30
(
6
), pp.
883
896
.
21.
Roth
,
B.
, and
Yang
,
A. T.
, 1977, “
Application of Instantaneous Invariants to the Analysis and Synthesis of Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
99
(
1
), pp.
97
103
.
22.
Stanišić
,
M. M.
,
Lodi
,
K.
, and
Pennock
,
G. R.
, 1992, “
Application of Curvature Theory to the Trajectory Generation Problem of Robot Manipulators
,”
ASME J. Mech. Des.
0161-8458,
114
(
4
), pp.
677
680
.
23.
Lorenc
,
S. J.
, and
Stanišić
,
M. M.
, 1994, “
Third-Order Control of a Planar System Tracking Constant Curvature Paths
,”
Advances in Robot Kinematics and Computational Geometry
,
J.
Lenarcic
and
B.
Ravani
, eds.,
Kluwer Academic
,
Dodrecht
, pp.
229
238
.
24.
Lorenc
,
S. J.
, and
Stanišić
,
M. M.
, 1994, “
Second Order Geometry-Based Path Tracking of Industrial Arm Sub-Assemblies
,”
23rd ASME Biennial Mechanisms Conferences
, Vol.
72
, pp.
301
306
.
25.
Golubitsky
,
M.
, and
Guillemin
,
V.
, 1973,
Stable Mappings and Their Singularities
,
Springer Verlag
,
New York
.
26.
Kreyszig
,
E.
,
Differential Geometry
, 1964,
University of Toronto Press
,
Toronto
.
27.
Ambike
,
S.
,
Schmiedeler
,
J. P.
, and
Stanišić
,
M. M.
, 2010, “
Geometric, Spatial Path Tracking and Rigid-Body Guidance Using Non-Redundant Manipulators via Speed-Ratio Control
,”
ASME
Paper No. DETC2010-28061.
28.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities of Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
1
), pp.
1
10
.
29.
Klein
,
C. A.
, and
Blaho
,
B. E.
, 1987, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Robot. Res.
0278-3649,
6
(
2
), pp.
72
83
.
30.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
31.
Angeles
,
J.
,
Rojas
,
A.
, and
López-Cajún
,
C. S.
, 1988, “
Trajectory Planning in Robotics Continuous-Path Applications
,”
IEEE Trans. Rob. Autom.
1042-296X,
4
(
4
), pp.
380
385
.
32.
Gosselin
,
C. M.
, 1990, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
650
655
.
33.
Kolmanovsky
,
I.
,
Reyhanoglu
,
M.
, and
McClamroch
,
N. H.
, 1994, “
Discontinuous Feedback Stabilization of Nonholonomic Systems is Extended Power Form
,”
Proceedings of the 33rd IEEE Conference on Decision and Control
, pp.
3469
3475
.
34.
Mishkov
,
R. L.
, 2000, “
Generalization of the Formula of Faa di Bruno for a Composite Function With a Vector Argument
,”
Int. J. Math. Math. Sci.
0161-1712,
24
(
7
), pp.
481
491
.
35.
Johnson
,
W. P.
, 2002, “
The Curious History of Faa di Bruno’s Formula
,”
Am. Math. Monthly
0002-9890,
109
, pp.
217
234
.
You do not currently have access to this content.