Based on the Lie-group-algebraic properties of the displacement set, the 4DOF primitive generators of the Schoenflies motion termed X-motion for brevity are briefly recalled. An X-motion includes 3DOF spatial translation and any 1DOF rotation provided that the axes are parallel to a given direction. The serial concatenation of two generators of 4DOF X-motion produces a 5DOF motion called double Schoenflies motion or X-X-motion for brevity, which includes 3DOFs of translations and any 2DOFs of rotations if the axes are parallel to two independent vectors. This is established using the composition product of two Lie subgroups of X-motion. All possible 5DOF serial chains with distinct general architectures for the generation of X-X-motion are comprehensively introduced in the beginning. The parallel setting between a fixed base and a moving platform of two 5DOF X-X limbs, under particular geometric conditions, makes up a 4DOF isoconstrained parallel generator (abbreviated as IPG-X) of a Schoenflies motion set. “Isoconstrained” is synonymous with “nonoverconstrianed,” and the corresponding chains are trivial chains of the 6D group of general 6DOF motions and can move in the presence of manufacturing errors. Moreover, related families of IPG-Xs are also deducted by using the reordering or the commutation of the factor method, which yields more 5D subsets of displacements containing also the X-motion of the end effector. In that way, several novel general-type architectures of 4DOF parallel manipulators with potential applications are synthesized systematically in consideration of the actuated pairs near the fixed base.

1.
Hervé
,
J. M.
, 2003, “
The Planar-Spherical Kinematic Bond: Implementation in Parallel Mechanisms
,” online at http://www.parallemic.org/Reviews/review013.htmlhttp://www.parallemic.org/Reviews/review013.html
2.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
, 2004, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
173
180
.
3.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2009, “
Type Synthesis of Primitive Schoenflies-Motion Generators
,”
Mech. Mach. Theory
0094-114X,
44
(
10
), pp.
1980
1997
.
4.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2006, “
Translational Parallel Manipulators With Doubly Planar Limbs
,”
Mech. Mach. Theory
0094-114X,
41
(
4
), pp.
433
455
.
5.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2007, “
Cartesian Parallel Manipulators With Pseudoplanar Limbs
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1256
1264
.
6.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2009, “
Uncoupled Actuation of Overconstrained 3T-1R Hybrid Parallel Manipulators
,”
Robotica
0263-5747,
27
(
01
), pp.
103
117
.
7.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
(
5
), pp.
719
730
.
8.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2010, “
Generators of the Product of Two Schoenflies Motion Groups
,”
Eur. J. Mech. A/Solids
0997-7538,
29
(
1
), pp.
97
108
.
9.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
617
674
.
10.
Clavel
,
R.
, 1990, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent No. 4,976,582.
11.
Pierrot
,
F.
, and
Company
,
O.
, 1999, “
H4: A New Family of 4-dof Parallel Robots
,”
Proceedings of the IEEE/ASME International Conference on Advances Intelligent Mechatronics
, pp.
508
513
.
12.
Company
,
O.
, and
Pierrot
,
F.
, 1999, “
A New 3T-1R Parallel Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
557
562
.
13.
Krut
,
S.
,
Company
,
O.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
, 2003, “
I4: A New Parallel Mechanism for Scara Motions
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Sept. 14–19, pp.
1875
1880
.
14.
Angeles
,
J.
,
Morozov
,
A.
, and
Navarro
,
O.
, 2000, “
A Novel Manipulator Architecture for the Production of the SCARA Motions
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Francisco, CA, pp.
2370
2375
.
15.
Rolland
,
R.
, 1999, “
The Manta and the Kanuk: Novel 4-DOF Parallel Mechanisms for Industrial Handling
,”
Proceedings of the ASME Dynamic Systems and Control Division, IMECE’99 Conference
, Nashville, TN, Vol.
67
, pp.
831
844
.
16.
Yang
,
T. -L.
,
Jin
,
Q.
,
Liu
,
A. -X.
,
Yao
,
F. H.
, and
Luo
,
Y.
, 2001, “
Structural Synthesis of 4-DOF (3-Translation and 1-Rotation) Parallel Robot Mechanisms Based on the Units of Single-Open-Chain
,”
Proceedings of the ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Pittsburgh, PA, Paper No. DETC2001/DAC-21152.
17.
Fang
,
Y.
, and
Tsai
,
L. -W.
, 2002, “
Structure Synthesis of a Class of 4-dof and 5-dof Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
799
810
.
18.
Salgado
,
O.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
, 2008, “
Synthsis and Design of a Novel 3T1R Fully-Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
042305
.
19.
Altuzarra
,
O.
,
Hernández
,
A.
,
Salgado
,
O.
, and
Angeles
,
J.
, 2009, “
Multiobjective Optimum Design of a Symmetric Parallel Schönflies-Motion Generator
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031002
.
20.
Caro
,
S.
,
Khan
,
W. A.
,
Pasini
,
D.
, and
Angeles
,
J.
, 2010, “
The Ruled-Based Conceptual Design of the Architecture of Serial Schonflies-Motion Generators
,”
Mech. Mach. Theory
0094-114X,
45
(
2
), pp.
251
260
.
21.
Huang
,
Z.
, and
Li
,
Q. C.
, 2002, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
131
145
.
22.
Kong
,
X. -W.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3T1R 4-dof Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
181
190
.
23.
Company
,
O.
,
Pierrot
,
F.
,
Nabat
,
V.
, and
Rodriguez
,
M.
, 2005, “
Schoenflies Motion Generator: A New Non Redundant Parallel Manipulator With Unlimited Rotation Capability
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Barcelona, Spain, pp.
3250
3255
.
24.
Richard
,
P. -L.
,
Gosselin
,
C. M.
, and
Kong
,
X.
, 2007, “
Kinematic Analysis and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
611
616
.
25.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2006, “
Parallel Manipulators With Four Degrees of Freedom
,” U.S. Patent No. 6,997,669.
26.
Carricato
,
M.
, 2005, “
Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion
,”
Int. J. Robot. Res.
0278-3649,
24
(
5
), pp.
397
414
.
27.
Gogu
,
G.
, 2007, “
Structural Synthesis of Fully-Isotropic Parallel Robots With Schönflies Motions via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A/Solids
0997-7538,
26
(
2
), pp.
242
269
.
28.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
, 2007, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
29.
Hervé
,
J. M.
, 1978, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
0094-114X,
13
(
4
), pp.
437
450
.
30.
Angeles
,
J.
, 1982,
Spatial Kinematic Chains
,
Springer-Verlag
,
Berlin
.
31.
Rodrigues
,
B. O.
, 1840, “
Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace
,”
Journal de Mathématiques Pures et Appliquées (de Liouville)
,
5
, pp.
380
440
.
32.
Reuleaux
,
F.
, 1875,
Theoretische Kinematik: Grunzüge einer Theorie des Maschinenwesens
,
Vieweg
,
Braunschweig
(reprinted as Kinematics of Machinery by Dover, New York, 1963).
33.
Selig
,
J. M.
, 2000,
Geometrical Foundations of Robotics
,
World Scientific
,
Singapore
.
You do not currently have access to this content.