Abstract

This paper studies the problem of computing an average (or mean) displacement from a set of given spatial displacements using three types of parametric representations: Euler angles and translation vectors, unit quaternions and translation vectors, and dual quaternions. It is shown that the use of Euclidean norm in the space of unit quaternions reduces the problem to that of computing the mean for each quaternion component separately and independently. While the resulting algorithm is simple, a change in the sign of a unit quaternion could lead to an incorrect result. A novel kinematic measure based on dual quaternions is introduced to capture the separation between two spatial displacements. This kinematic measure is used to define the variance of a set of displacements, which is then used to formulate a constrained least squares minimization problem. It is shown that the problem decomposes into that of finding the optimal translation vector and the optimal unit quaternion. The former is simply the centroid of the set of translation vectors and the latter is obtained as the eigenvector corresponding to the least eigenvalue of a 4 × 4 positive definite symmetric matrix. In addition, it is found that the weight factor used in combining rotations and translations in the formulation does not play a role in the final outcome. Examples are provided to show the comparisons of these methods.

References

1.
International Commission on Radiation Units Measurements
,
2010
,
ICRU Report 83 Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT), Chapter 4: Definition of Volumes
, Vol.
10
,
Oxford University Press
.
2.
Remeijer
,
P.
,
Rasch
,
C.
,
Lebesque
,
J. V.
, and
van Herk
,
M.
,
2002
, “
Margins for Translational and Rotational Uncertainties: A Probability-Based Approach
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
53
(
2
), pp.
464
74
.
3.
van den Brekel
,
M. W.
, and
Castelijns
,
J. A.
,
2005
, “
What the Clinician Wants to Know: Surgical Perspective and Ultrasound for Lymph Node Imaging of the Neck
,”
Cancer Imag.
,
5
(
Spec No A
), pp.
S41
S49
.
4.
Navran
,
A.
,
Heemsbergen
,
W.
,
Janssen
,
T.
,
Hamming-Vrieze
,
O.
,
Jonker
,
M.
,
Zuur
,
C.
,
Verheij
,
M.
, et al.,
2019
, “
The Impact of Margin Reduction on Outcome and Toxicity in Head and Neck Cancer Patients Treated With Image-Guided Volumetric Modulated Arc Therapy (VMAT)
,”
Radiother. Oncol.
,
130
, pp.
25
31
.
5.
Yoshioka
,
T.
,
Tsuji
,
H.
,
Hirano
,
N.
, and
Sainoh
,
S.
,
1990
, “
Motion Characteristic of the Normal Lumbar Spine in Young Adults: Instantaneous Axis of Rotation and Vertebral Center Motion Analyses
,”
J. Spinal Disorder.
,
3
(
2
), pp.
103
113
.
6.
Spoor
,
C.
, and
Veldpaus
,
F.
,
1980
, “
Rigid Body Motion Calculated From Spatial Coordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.
7.
Laub
,
A.
, and
Shiflett
,
G.
,
1982
, “
A Linear Algebra Approach to the Analysis of Rigid Body Displacement From Initial and Final Position Data
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
213
216
.
8.
Angeles
,
J.
,
1986
, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part I: Finitely-Separated Positions
,”
ASME J. Dyn. Syst. Meas. Contr.
,
108
(
1
), pp.
32
38
.
9.
Angeles
,
J.
,
1986
, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitesimally-Separated Positions
,”
ASME J. Dyn. Syst. Meas. Contr.
,
108
(
1
), pp.
39
43
.
10.
Ravani
,
B.
, and
Ge
,
Q. J.
,
1993
, “
Computation of Spatial Displacements From Geometric Features
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
95
102
.
11.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994
, “
Computation of Spatial Displacements From Redundant Geometric Features
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1073
1080
.
12.
Eberharter
,
J. K.
, and
Ravani
,
B.
,
2006
, “
Kinematic Registration in 3D Using the 2D Reuleaux Method
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
349
355
.
13.
Ge
,
Q.
,
Yu
,
Z.
, and
Langer
,
M.
,
2020
, “
A Dual Quaternion Based Method for Estimating Margins for Planning Target Volumes in Radiotherapy
,
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,” Vol.
83990
,
Virtual
,
Aug. 17–19
, p.
V010T10A095
.
14.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists, Updated and Expanded Edition
,
Dover Publications
,
New York
.
15.
Park
,
F. C.
,
1995
, “
Distance Metrics on the Rigid-Body Motions With Applications to Mechanism Design
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
48
54
.
16.
Martinez
,
J.
, and
Duffy
,
J.
,
1995
, “
On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
41
47
.
17.
Gupta
,
K.
,
1997
, “
Measures of Positional Error for a Rigid Body
,”
ASME J. Mech. Des.
,
119
(
3
), pp.
346
349
.
18.
Zefran
,
M.
,
Kumar
,
V.
, and
Croke
,
C.
,
1999
, “
Metrics and Connections for Rigid-Body Kinematics
,”
Int. J. Rob. Res.
,
18
(
2
), p.
242
.
19.
Angeles
,
J.
,
2006
, “
Is there a Characteristic Length of a Rigid-Body Displacement?
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.
20.
Larochelle
,
P.
, and
McCarthy
,
J.
,
1995
, “
Planar Motion Synthesis Using an Approximate Bi-Invariant Metric
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
646
651
.
21.
Etzel
,
K. R.
, and
McCarthy
,
J. M.
,
1996
, “
A Metric for Spatial Displacement Using Biquaternions on SO(4)
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
4
, pp.
3185
3190
.
22.
Ge
,
Q.
,
Wu
,
J.
,
Purwar
,
A.
, and
Gao
,
F.
,
2009
, “
Kinematic Convexity of Planar Displacements Based on an Approximately Bi-Invariant Metric
, ”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol.
7
, pp.
1305
1313
.
23.
Chirikjian
,
G. S.
,
2015
, “
Partial Bi-Invariance of SE (3) Metrics
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011008
.
24.
Venkataramanujam
,
V.
, and
Larochelle
,
P. M.
,
2010
, “
A Coordinate Frame Useful for Rigid-Body Displacement Metrics
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
044503
.
25.
Zhao
,
P.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Li
,
X.
,
2020
, “
A Frame-Independent Comparison Metric for Discrete Motion Sequences
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
234
(
9
), pp.
1764
1774
.
26.
Shah
,
S.
,
Saha
,
S.
, and
Dutt
,
J.
,
2012
, “
Denavit-Hartenberg Parameterization of Euler Angles
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021006
.
27.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
,
Boston, MA
.
28.
Sun
,
T.
,
Yang
,
S.
, and
Lian
,
B.
,
2020
,
Finite and Instantaneous Screw Theory on Robotic Mechanism
,
Springer
,
Switzerland
.
29.
Liu
,
C.
,
Song
,
Y.
,
Ma
,
X.
, and
Sun
,
T.
,
2022
, “
Accurate and Robust Registration Method for Computer-Assisted High Tibial Osteotomy Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
18
, pp.
329
337
.
You do not currently have access to this content.