Abstract

In this work, the motion of a nonlinear inverted pendulum (NIP) on deformable terrain due to foot contact forces is used for energy analysis and footstep placement. In order to include the linear and rotational motions of the NIP, the mass moment of inertia of the body is also considered in the center of mass (CoM) model. The terrain deformation is modeled using a spring-damper contact model, and based on the rigid body dynamics of the NIP, its motion is generated. The energy analysis of the system provides the regions of possible foot placement. Based on the loss of potential energy due to ground deformation, the limits of terrain stiffness are also obtained for walking on uneven deformable terrain.

References

1.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Robot.
,
1
(
1
), pp.
157
173
.
2.
Kajita
,
S.
, and
Tani
,
K.
,
1991
, “
Study of Dynamic Biped Locomotion on Rugged Terrain-Derivation and Application of the Linear Inverted Pendulum Mode
,”
Proceedings of 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, pp.
1405
1406
.
3.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3d Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180)
,
Maui, HI
,
Oct. 29–Nov. 3
, Vol. 1, IEEE, pp.
239
246
.
4.
Sato
,
T.
,
Sakaino
,
S.
,
Ohashi
,
E.
, and
Ohnishi
,
K.
,
2010
, “
Walking Trajectory Planning on Stairs Using Virtual Slope for Biped Robots
,”
IEEE Trans. Ind. Electron.
,
58
(
4
), pp.
1385
1396
.
5.
Sarkar
,
A.
, and
Dutta
,
A.
,
2015
, “
8-DoF Biped Robot With Compliant-Links
,”
Rob. Auton. Syst.
,
63
(
1
), pp.
57
67
.
6.
Kumar
,
J.
, and
Dutta
,
A.
,
2022
, “
Energy Optimal Motion Planning of a 14-DoF Biped Robot on 3d Terrain Using a New Speed Function Incorporating Biped Dynamics and Terrain Geometry
,”
Robotica
,
40
(
2
), pp.
250
278
.
7.
Kajita
,
S.
,
Hirukawa
,
H.
,
Harada
,
K.
, and
Yokoi
,
K.
,
2014
,
Introduction to Humanoid Robotics
,
Springer
,
Berlin/Heidelberg
.
8.
Lee
,
S.-H.
, and
Goswami
,
A.
,
2007
, “
Reaction Mass Pendulum (RMP): An Explicit Model for Centroidal Angular Momentum of Humanoid Robots
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp.
4667
4672
.
9.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Stability Region-Based Analysis of Walking and Push Recovery Control
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031005
.
10.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.
11.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B: Biol. Sci.
,
273
(
1603
), pp.
2861
2867
.
12.
Goswami
,
A.
,
Thuilot
,
B.
, and
Espiau
,
B.
,
1996
, “
Compass-Like Biped Robot Part I: Stability and Bifurcation of Passive Gaits
,” Ph.D. thesis,
INRIA
,
Grenoble, France
.
13.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
2006 6th IEEE-RAS International Conference on Humanoid Robots
,
Genova, Italy
,
Dec. 4–6
, IEEE, pp.
200
207
.
14.
Crews
,
S.
, and
Travers
,
M.
,
2020
, “
Energy Management Through Footstep Selection for Bipedal Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5485
5493
.
15.
Zheng
,
Y. F.
,
Wang
,
H.
,
Li
,
S.
,
Liu
,
Y.
,
Orin
,
D.
,
Sohn
,
K.
,
Jun
,
Y.
, and
Oh
,
P.
,
2013
, “
Humanoid Robots Walking on Grass, Sands and Rocks
,”
2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)
,
Woburn, MA
,
Apr. 22–23
, IEEE, pp.
1
6
.
16.
Hashimoto
,
K.
,
Kang
,
H.-J.
,
Nakamura
,
M.
,
Falotico
,
E.
,
Lim
,
H.-O.
,
Takanishi
,
A.
,
Laschi
,
C.
,
Dario
,
P.
, and
Berthoz
,
A.
,
2012
, “
Realization of Biped Walking on Soft Ground With Stabilization Control Based on Gait Analysis
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
2064
2069
.
17.
Mesesan
,
G.
,
Englsberger
,
J.
,
Garofalo
,
G.
,
Ott
,
C.
, and
Albu-Schäffer
,
A.
,
2019
, “
Dynamic Walking on Compliant and Uneven Terrain Using DCM and Passivity-Based Whole-Body Control
,”
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
,
Toronto, ON, Canada
,
Oct. 15–17
, IEEE, pp.
25
32
.
18.
Gora
,
S.
,
Gupta
,
S. S.
, and
Dutta
,
A.
,
2021
, “
Optimal Gait Generation of an 8-dof Biped Robot on Deformable Terrain Using Floating-Base Dynamics
,”
Proceedings of the Advances in Robotics—5th International Conference of The Robotics Society
,
Kanpur, India
,
June 30–July 4
, pp.
1
6
.
19.
Byl
,
K.
, and
Tedrake
,
R.
,
2008
, “
Approximate Optimal Control of the Compass Gait on Rough Terrain
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp.
1258
1263
.
20.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
, and
Lefeber
,
D.
,
2008
, “
Objective Locomotion Parameters Based Inverted Pendulum Trajectory Generator
,”
Rob. Auton. Syst.
,
56
(
9
), pp.
738
750
.
21.
Mummolo
,
C.
,
Peng
,
W. Z.
,
Gonzalez
,
C.
, and
Kim
,
J. H.
,
2018
, “
Contact-Dependent Balance Stability of Biped Robots
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021009
.
22.
Coleman
,
M. J.
,
2010
, “
Dynamics and Stability of a Rimless Spoked Wheel: A Simple 2d System With Impacts
,”
Dyn. Syst.
,
25
(
2
), pp.
215
238
.
23.
Lambe
,
T. W.
, and
Whitman
,
R. V.
,
1991
,
Soil Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.