Abstract

This article presents critical design modifications for an Origami-enabled Soft Crawling Autonomous Robot (OSCAR). OSCAR’s upgraded design mitigates motion uncertainties, which often plague soft robots. More specifically, we present a design that mitigates motion uncertainties caused by the feet interaction with the ground and uncertainties in the assembly procedures and actuators’ control. The new design has a robust and repeatable locomotion cycle that reaches more than 95% of its ideal, analytically predicted locomotion cycle. OSCAR’s performance is experimentally validated using two case studies, namely, navigation in a 2D environment with static obstacles and coupled locomotion of two docked OSCAR segments. Results from the first case study demonstrate OSCAR’s accurate and robust path following performance across multiple trials and experiments. Results from the second case study show the successful and repeatable earthworm-inspired locomotion of two docked OSCAR segments. The second case study demonstrates OSCAR’s modular design. OSCAR’s modified design, along with the reduced motion uncertainty, allows for operation where individual segments can operate alone or while docked to other segments. The repeatable and modular OSCAR design presented in this study expands the operational envelope for origami-enabled robots and allows their deployment in various applications.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
2.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.
3.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Rob.
,
1
(
3
), pp.
213
223
.
4.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
, “
A Soft Robot That Navigates Its Environment Through Growth
,”
Sci. Rob.
,
2
(
8
), pp.
1
8
.
5.
Greer
,
J. D.
,
Blumenschein
,
L. H.
,
Okamura
,
A. M.
, and
Hawkes
,
E. W.
,
2018
, “
Obstacle-Aided Navigation of a Soft Growing Robot
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
4165
4172
.
6.
Lee
,
J. Y.
,
Kang
,
B. B.
,
Lee
,
D. Y.
,
Baek
,
S. M.
,
Kim
,
W. B.
,
Choi
,
W. Y.
,
Song
,
J. R.
,
Joo
,
H. J.
,
Park
,
D.
, and
Cho
,
K. J.
,
2016
, “
Development of a Multi-Functional Soft Robot (SNUMAX) and Performance in RoboSoft Grand Challenge
,”
Front. Rob. AI
,
3
(
63
), pp.
1
11
.
7.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K. W.
,
2017
, “
Origami-Based Earthworm-Like Locomotion Robots
,”
Bioinspiration & Biomimetics
,
12
(
6
), p.
065003
.
8.
Jayaram
,
K.
, and
Full
,
R. J.
,
2016
, “
Cockroaches Traverse Crevices, Crawl Rapidly in Confined Spaces, and Inspire a Soft, Legged Robot
,”
Proc. Natl Acad. Sci. USA
,
113
(
8
), pp.
E950
E957
.
9.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.
10.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
11.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
12.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), p.
eaah3690
.
13.
Dollar
,
A. M.
,
Cho
,
K. -J.
,
Fearing
,
R. S.
, and
Park
,
Y. -L.
,
2015
, “
Special Issue: Fabrication of Fully Integrated Robotic Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
020201
.
14.
Firouzeh
,
A.
, and
Paik
,
J.
,
2015
, “
Robogami: A Fully Integrated Low-Profile Robotic Origami
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021009
.
15.
Zhakypov
,
Z.
,
Mori
,
K.
,
Hosoda
,
K.
, and
Paik
,
J.
,
2019
, “
Designing Minimal and Scalable Insect-Inspired Multi-locomotion Millirobots
,”
Nature
,
571
(
7765
), pp.
381
386
.
16.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
430
438
.
17.
Wheeler
,
C. M.
, and
Culpepper
,
M. L.
,
2016
, “
Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051012
.
18.
Pierre
,
R. S.
, and
Bergbreiter
,
S.
,
2019
, “
Toward Autonomy in Sub-Gram Terrestrial Robots
,”
Annu. Rev. Control Rob. Auton. Syst.
,
2
(
1
), pp.
231
252
.
19.
Goldberg
,
B.
,
Zufferey
,
R.
,
Doshi
,
N.
,
Helbling
,
E. F.
,
Whittredge
,
G.
,
Kovac
,
M.
, and
Wood
,
R. J.
,
2018
, “
Power and Control Autonomy for High-Speed Locomotion with an Insect-Scale Legged Robot
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
987
993
.
20.
Angatkina
,
O.
,
Chien
,
B.
,
Pagano
,
A.
,
Yan
,
T.
,
Alleyne
,
A.
,
Tawfick
,
S.
, and
Wissa
,
A.
,
2017
, “
A Metameric Crawling Robot Enabled by Origami and Smart Materials
,”
ASME 2017 Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 18–20
, Vol. 1, ASME, p. V001T06A008.
21.
Luo
,
M.
,
Yan
,
R.
,
Wan
,
Z.
,
Qin
,
Y.
,
Santoso
,
J.
,
Skorina
,
E. H.
, and
Onal
,
C. D.
,
2018
, “
OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1993
1999
.
22.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
,
2015
, “
An Untethered Miniature Origami Robot That Self-folds, Walks, Swims, and Degrades
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 25–30
, IEEE, pp.
1490
1496
.
23.
Miyashita
,
S.
,
Guitron
,
S.
,
Yoshida
,
K.
,
Li
,
S.
,
Damian
,
D. D.
, and
Rus
,
D.
,
2016
, “
Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds
,”
2016 IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–20
, IEEE, pp.
909
916
.
24.
Rich
,
S. I.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), pp.
102
112
.
25.
Angatkina
,
O.
,
Gustafson
,
K.
,
Wissa
,
A.
, and
Alleyne
,
A. G.
,
2019
, “
Path Following for the Origami Crawling Robot
,”
ASME 2019 Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8 –11
, pp.
1
9
.
26.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
27.
Gustafson
,
K.
,
Angatkina
,
O.
, and
Wissa
,
A.
,
2020
, “
Model-Based Design of a Multistable Origami-Enabled Crawling Robot
,”
Smart Mater. Struct.
,
29
(
1
), p.
015013
.
28.
Yim
,
M.
,
Shen
,
W.-M.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
, and
Klavins
,
E.
,
2007
, “
Modular Self-reconfigurable Robot Systems [Grand Challenges of Robotics]
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
43
52
.
29.
Sohal
,
S. S.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2021
, “
Autonomous Docking of Hybrid-Wheeled Modular Robots With an Integrated Active Genderless Docking Mechanism
,”
J. Mech. Rob.
,
14
(
1
), p.
011010
.
30.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K.-J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Meshworm: A Peristaltic Soft Robot with Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1485
1497
.
31.
Fang
,
H.
,
Zhang
,
Y.
,
Wang
,
K. W.
, and
Park
,
G.
,
2017
, “
An Earthworm-Like Robot Using Origami-Ball Structures
,”
Active and Passive Smart Structures and Integrated Systems 2017
,
Portland, OR
,
Mar. 26–29
, Vol. 10164, SPIE, pp.
229
238
.
32.
Dolgov
,
D.
,
Thrun
,
S.
,
Montemerlo
,
M.
, and
Diebel
,
J.
,
2008
, “
Practical Search Techniques in Path Planning for Autonomous Driving Introduction and Related Work
,”
Ann Arbor
,
1001
(
48105
), pp.
18
80
.
33.
Kurzer
,
K.
,
2016
,
Path Planning in Unstructured Environments: A Real-time Hybrid A* Implementation for Fast and Deterministic Path Generation for the KTH Research Concept Vehicle
,
Master's thesis, KTH Royal Institute of Technology, Stockholm, Sweden
.
34.
Petereit
,
J.
,
Emter
,
T.
,
Frey
,
C.
,
Kopfstedt
,
T.
, and
Beutel
,
A.
,
2012
, “
Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments
,”
ROBOTIK 2012; 7th German Conference on Robotics
,
Munich, Germany
,
May 21–22
.
35.
Luo
,
M.
,
2017
,
Pressure-Operated Soft Robotic Snake Modeling, Control, and Motion Planning
,
Ph.D. thesis, Worcester Polytechnic Institute
,
Worcester, MA
.
36.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
, 2nd ed.,
Springer Science & Business Media
,
New York
.
37.
Fang
,
H.
,
Li
,
S.
,
Wang
,
K. W.
, and
Xu
,
J.
,
2015
, “
Phase Coordination and Phase–Velocity Relationship in Metameric Robot Locomotion
,”
Bioinspiration Biomimetics
,
10
(
6
), p.
066006
.
38.
Angatkina
,
O.
,
2021
,
Design and Control of an Origami-Enabled Soft Crawling Autonomous Robot (OSCAR)
,
Ph.D. thesis, University of Illinois Urbana-Champaign
,
Urbana, IL
. hdl.handle.net/2142/110414
You do not currently have access to this content.