Abstract

Conventional inspection procedures using industrial endoscope cameras find it challenging to inspect narrow pipes because the endoscope cannot be inserted in the pipes due to the increasing friction and complex pipe structure. Active propulsion techniques can help improve inspection efficiency; however, the locomotion mechanism in such a narrow space is challenging because of the pipe’s geometrical configuration. In this study, a novel flexible propulsion module is proposed for narrow pipe inspection. The module is designed based on a newly proposed hollow-type duplex-chambered inchworm mechanism, which achieves smooth inchworm locomotion using only two air supply lines. With a simple attachable module design, the inspection operator can easily add active propulsion capabilities onto the regular industrial endoscope camera with a maximum diameter of 7 mm. The concept of the system and the structure of the mechanism are presented herein. Various experiments and simulations were performed to reveal the characteristics of the mechanism, and the results are discussed in terms of operating pressure, generated force, and locomotion speed, among other parameters. A prototype demonstrated smooth locomotion through 31-mm pipes at 26.6, 22.1, and 51.1 mm/s for horizontal locomotion, vertical climbing, and vertical descent, respectively, and performed well through a bending pipe.

References

1.
Olympus Corporation
,
2022
, “
Save Time on Plant Maintenance Inspections Using Videoscopes
,”
January
, https://www.olympus-ims.com/en/save-time-on-plant-maintenance-inspections-using-videoscopes
2.
Suzumori
,
K.
,
Miyagawa
,
T.
,
Kimura
,
M.
, and
Hasegawa
,
Y.
,
1999
, “
Micro Inspection Robot for 1-in Pipes
,”
IEEE/ASME Trans. Mechatron.
,
4
(
3
), pp.
286
292
.
3.
Dertien
,
E.
,
Stramigioli
,
S.
, and
Pulles
,
K.
,
2011
, “
Development of an Inspection Robot for Small Diameter Gas Distribution Mains
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
5044
5049
.
4.
Dertien
,
E.
,
Foumashi
,
M. M.
,
Pulles
,
K.
, and
Stramigioli
,
S.
,
2014
, “
Design of a Robot for In-Pipe Inspection Using Omnidirectional Wheels and Active Stabilization
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
5121
5126
.
5.
Debenest
,
P.
,
Guarnieri
,
M.
, and
Hirose
,
S.
,
2014
, “
PipeTron Series – Robots for Pipe Inspection
,”
Proceedings of the Third International Conference on Applied Robotics for the Power Industry
,
Foz do Iguassu, Brazil
,
Oct. 14–16
, pp.
1
6
.
6.
Li
,
T.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
,
Li
,
Z.
, and
Wang
,
Y.
,
2017
, “
Development of an In-Pipe Robot With Differential Screw Angles for Curved Pipes and Vertical Straight Pipes
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051014
.
7.
Sachdeva
,
E.
,
Singh
,
A.
,
Sarkar
,
A.
, and
Krishna
,
K. M.
,
2017
, “
Design and Optimal Springs Stiffness Estimation of a Modular OmniCrawler In-Pipe Climbing Robot
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau SAR, China
,
Dec. 5–8
, pp.
1912
1917
.
8.
Kwon
,
Y.-S.
, and
Yi
,
B.-J.
,
2012
, “
Design and Motion Planning of a Two-Module Collaborative Indoor Pipeline Inspection Robot
,”
IEEE Trans. Robot.
,
28
(
3
), pp.
681
696
.
9.
Wakimoto
,
S.
,
Nakajima
,
J.
,
Takata
,
M.
,
Kanda
,
T.
, and
Suzumori
,
K.
,
2003
, “
A Micro Snake-Like Robot for Small Pipe Inspection
,”
Proceedings of the International Symposium on Micromechatronics and Human Science
,
Nagoya, Japan
,
Oct. 19–22
, pp.
303
308
.
10.
Brunete
,
A.
,
Gambao
,
E.
,
Torres
,
J.
, and
Hernando
,
M.
,
2006
, “
A 2 DoF Servomotor-Based Module for Pipe Inspection Modular Micro-Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Beijing, China
,
Oct. 9–15
, pp.
1329
1334
.
11.
Kuwada
,
A.
,
Adomi
,
Y.
,
Suzumori
,
K.
,
Kanda
,
T.
,
Wakimoto
,
S.
, and
Kadowaki
,
N.
,
2007
, “
Snake-Like Robot Negotiating Three-Dimensional Pipelines
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 15–18
, pp.
989
994
.
12.
Kuwada
,
A.
,
Wakimoto
,
S.
,
Suzumori
,
K.
, and
Adomi
,
Y.
,
2008
, “
Automatic Pipe Negotiation Control for Snake-Like Robot
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Xi'an, China
,
July 2–5
, pp.
558
563
.
13.
Siqueira
,
E.
,
Botelho
,
S.
,
Azzolin
,
R.
, and
Oliveira
,
V.
,
2016
, “
A Review About Robotic Inspection Considering the Locomotion Systems and Odometry
,”
Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
,
Oct. 23–26
, pp.
571
576
.
14.
Ikeuchi
,
M.
,
Nakamura
,
T.
, and
Matsubara
,
D.
,
2012
, “
Development of an In-Pipe Inspection Robot for Narrow Pipes and Elbows Using Pneumatic Artificial Muscles
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Algarve, Portugal
,
Oct. 7–12
, pp.
926
931
.
15.
Tanise
,
Y.
,
Kishi
,
T.
,
Yamazaki
,
S.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2016
, “
High-Speed Response of the Pneumatic Actuator Used in a Peristaltic Crawling Robot Inspecting Long-Distance Gas Pipes
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, Canada
,
July 12–15
, pp.
1234
1239
.
16.
Yamazaki
,
S.
,
Tanise
,
Y.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2016
, “
Development of Axial Extension Actuator for Narrow Pipe Inspection Endoscopic Robot
,”
Proceedings of the IEEE/SICE International Symposium on System Integration
,
Sapporo, Japan
,
Dec. 13–15
, pp.
634
639
.
17.
Kamata
,
M.
,
Yamazaki
,
S.
,
Tanise
,
Y.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2017
, “
Development of Pneumatically Driven Peristaltic-Type Robot for Long Distance Inspection in Half-Inch Pipes
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics
,
Munich, Germany
,
July 3–7
, pp.
309
314
.
18.
Qiao
,
J.
,
Shang
,
J.
, and
Goldenberg
,
A.
,
2013
, “
Development of Inchworm In-Pipe Robot Based on Self-Locking Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
799
806
.
19.
Calderón
,
A. A.
,
Ugalde
,
J. C.
,
Zagal
,
J. C.
, and
Pérez-Arancibia
,
N. O.
,
2016
, “
Design, Fabrication and Control of a Multi-Material-Multi-Actuator Soft Robot Inspired by Burrowing Worms
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, pp.
31
38
.
20.
Heung
,
H.
,
Chiu
,
P. W.
, and
Li
,
Z.
,
2016
, “
Design and Prototyping of a Soft Earthworm-Like Robot Targeted for GI Tract Inspection
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, pp.
497
502
.
21.
Nomura
,
K.
,
Sato
,
M.
,
Takeuchi
,
H.
,
Minoru
,
K.
,
Ryoichi
,
T.
,
Ishii
,
H.
, and
Takanishi
,
A.
,
2017
, “
Development of In-Pipe Robot With Extension Hose and Balloons
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
,
Takamatsu, Japan
,
Aug. 6–9
, pp.
1481
1486
.
22.
Gilbertson
,
M. D.
,
McDonald
,
G.
,
Korinek
,
G.
,
Van de Ven
,
J. D.
, and
Kowalewski
,
T. M.
,
2017
, “
Serially Actuated Locomotion for Soft Robots in Tube-Like Environments
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
1140
1147
.
23.
Miyasaka
,
K.
,
Kawano
,
G.
, and
Tsukagoshi
,
H.
,
2018
, “
Long-Mover: Flexible Tube In-Pipe Inspection Robot for Long Distance and Complex Piping
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Auckland, New Zealand
,
July 9–12
, pp.
1075
1080
.
24.
Kamata
,
M.
,
Tachibana
,
K.
,
Tanise
,
Y.
,
Kawaguchi
,
T.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2018
, “
Proposal of One-Inch Pipe Inspection Robot ‘PI-RO I’
,”
Proceedings of the Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics
,
Enschede, The Netherlands
,
Aug. 26–29
, pp.
1315
1320
.
25.
Zhang
,
X.
,
Pan
,
T.
,
Heung
,
H. L.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2018
, “
A Biomimetic Soft Robot for Inspecting Pipeline With Significant Diameter Variation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
7486
7491
.
26.
Zhang
,
Z.
,
Wang
,
X.
,
Wang
,
S.
,
Meng
,
D.
, and
Liang
,
B.
,
2019
, “
Design and Modeling of a Parallel-Pipe-Crawling Pneumatic Soft Robot
,”
IEEE Access
,
7
, p.
134301
.
27.
Zhang
,
Y.
,
Xu
,
J.
, and
Wang
,
W.
,
2018
, “
Kinematicsand Force Analysis of Flexible Screw Mechanism for a WormRobot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061005
.
28.
Ravina
,
E.
,
2010
, “
A Low Cost Pneumatronic Unit for Pipes Inspections
,”
Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
,
July 12–14
, pp.
873
878
.
29.
Wang
,
J.
,
Chen
,
G.
,
Zhang
,
Z.
,
Suo
,
J.
, and
Wang
,
H.
,
2022
, “
Wireless Multiplexing Control Based on Magnetic Coupling Resonance and Its Applications in Robot
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011009
.
30.
Yamamoto
,
T.
,
Sakama
,
S.
, and
Kamimura
,
A.
,
2020
, “
Pneumatic Duplex-Chambered Inchworm Mechanism for Narrow Pipes Driven by Only Two Air Supply Lines
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5034
5042
.
31.
Wakana
,
K.
,
Namari
,
H.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2013
, “
Pneumatic Flexible Hollow Shaft Actuator With High Speed and Long Stroke Motion
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA)
, Karlsruhe, Germany, May 6–10, pp.
357
363
.
You do not currently have access to this content.