Abstract

This work proposed the design of a simple, robust, and inexpensive motion transmission for hand prostheses. The main challenge to be solved is to generate not only fast movements for the closing of the fingers during the grasping but also important forces to hold these objects. A two-speed load adaptive variable transmission is introduced to solve this challenge using a planetary gear train to reduce the speed and a selector clutch with wrap spring. The main properties of these two systems are recalled and a guideline is introduced to reach the user requirement. Finally, an application example is presented and the proposed prototype is analyzed.

References

1.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review
,”
J. Rehabil. Res. Dev.
,
50
(
5
), pp.
599
618
.
2.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2013
, “
Novel Differential Mechanism Enabling Two DOF From a Single Actuator: Application to a Prosthetic Hand
,” In
2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
IEEE
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
3.
Leddy
,
M. T.
, and
Dollar
,
A. M.
,
2018
, “
Preliminary Design and Evaluation of a Single-Actuator Anthropomorphic Prosthetic Hand With Multiple Distinct Grasp Types
,” In
2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
IEEE
,
Enschede, The Netehrlands
,
Aug. 26–29
, pp.
1062
1069
.
4.
Wattanasiri
,
P.
,
Tangpornprasert
,
P.
, and
Virulsri
,
C.
,
2018
, “
Design of Multi-Grip Patterns Prosthetic Hand With Single Actuator
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
6
), pp.
1188
1198
.
5.
Zheng
,
Y.
,
Li
,
X.
,
Tian
,
L.
, and
Li
,
G.
,
2018
, “
Design of a Low-Cost and Humanoid Myoelectric Prosthetic Hand Driven by a Single Actuator to Realize Basic Hand Functions
,”
2018 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Oct. 25–27
,
IEEE
,
Shenzhen
, pp.
603
606
.
6.
Xu
,
K.
,
Liu
,
H.
,
Zenghui
,
L.
,
Du
,
Y.
, and
Zhu
,
X.
,
2015
, “
A Single-Actuator Prosthetic Hand Using a Continuum Differential Mechanism
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
May 26–30
,
IEEE
,
Seattle, WA
, pp.
6457
6462
.
7.
Laffranchi
,
M.
,
Boccardo
,
N.
,
Traverso
,
S.
,
Lombardi
,
L.
,
Canepa
,
M.
,
Lince
,
A.
,
Semprini
,
M.
,
Saglia
,
J. A.
,
Naceri
,
A.
,
Sacchetti
,
R.
,
Gruppioni
,
E.
, and
De Michieli
,
L.
,
2020
, “
The Hannes Hand Prosthesis Replicates the Key Biological Properties of the Human Hand
,”
Sci. Rob.
,
5
(
46
), p.
eabb0467
.
8.
Weir
,
R. F.
,
2004
, “Design of Artificial Arms and Hands for Prosthetic Applications,”
Standard Handbook of Biomedical Engineering & Design
,
Digital Engineering Library, McGraw-Hill
,
New York
, pp.
32.1
32.61
.
9.
Puchhammer
,
G.
,
2007
, “
Clutch Module for Prostheses
,” WO2007076795A1.
10.
Kernbaum
,
A. S.
,
Kitchell
,
M.
, and
Crittenden
,
M.
,
2017
, “
An Ultra-Compact Infinitely Variable Transmission for Robotics
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
May 29–June 3
,
IEEE
,
Singapore
, pp.
1800
1807
.
11.
Takaki
,
T.
,
Sugiyama
,
K.
,
Takayama
,
T.
, and
Omata
,
T.
,
2006
, “
Development of a 2-d.o.f. Finger Using Load-Sensitive Continuously Variable Transmissions and Ultrasonic Motors
,”
Adv. Rob.
,
20
(
8
), pp.
897
911
.
12.
Liu
,
H.
,
Bin
,
Z.
,
Liu
,
Z.
, and
Xu
,
K.
,
2020
, “
Design of a Lightweight Single-Actuator Multi-Grasp Prosthetic Hand With Force Magnification
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051014
.
13.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2014
, “
A Passively Adaptive Rotary-to-Linear Continuously Variable Transmission
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1148
1160
.
14.
Matsushita
,
K.
,
Shikanai
,
S.
, and
Yokoi
,
H.
,
2009
, “
Development of Drum CVT for a Wire-Driven Robot Hand
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Oct. 10–15
,
IEEE
,
St. Louis, MO
, pp.
2251
2256
.
15.
O’Brien
,
K. W.
,
Xu
,
P. A.
,
Levine
,
D. J.
,
Aubin
,
C. A.
,
Yang
,
H.-J.
,
Xiao
,
M. F.
,
Wiesner
,
L. W.
, and
Shepherd
,
R. F.
,
2018
, “
Elastomeric Passive Transmission for Autonomous Force-Velocity Adaptation Applied to 3D-Printed Prosthetics
,”
Sci. Rob.
,
3
(
23
), p.
eaau5543
.
16.
Shin
,
Y. J.
,
Lee
,
H. J.
,
Kim
,
K. -S.
, and
Kim
,
S.
,
2012
, “
A Robot Finger Design Using a Dual-Mode Twisting Mechanism to Achieve High-Speed Motion and Large Grasping Force
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1398
1405
.
17.
Naclerio
,
N. D.
,
Kerst
,
C. F.
,
Haggerty
,
D. A.
,
Suresh
,
S. A.
,
Singh
,
S.
,
Ogawa
,
K.
,
Miyazaki
,
S.
,
Cutkosky
,
M. R.
, and
Hawkes
,
E. W.
,
2019
, “
Low-Cost, Continuously Variable, Strain Wave Transmission Using Gecko-Inspired Adhesives
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
894
901
.
18.
Projets: Bionicohand WIKILAB
” Accessed November 2021, https://wikilab.myhumankit.org/index.php?title=Projets:Bionicohand
19.
Falco
,
J.
,
Van Wyk
,
K.
, and
Messina
,
E.
,
2018
, “
Performance Metrics and Test Methods for Robotic Hands
.” 10.6028/NIST.SP.1227-draft10.6028/NIST.SP.1227-draft
20.
Lowery
,
R.
, and
Mehrbrodt
,
A.
,
1976
, “
How to Do More With Wrapped-Spring Clutches
,”
Mach. Des.
,
48
(
17
), pp.
78
83
.
21.
Roach
,
G. M.
, and
Howell
,
L. L.
,
2002
, “
Evaluation and Comparison of Alternative Compliant Overrunning Clutch Designs
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
485
491
.
22.
Cronin
,
K.
, and
Gleeson
,
J. P.
,
2013
, “
Variability in Output Torque of Capstan and Wrap Spring Elements
,”
Mech. Mach. Theory
,
68
, pp.
49
66
.
23.
Wiebusch
,
C. F.
,
1939
, “
The Spring Clutch
,”
ASME J. Appl. Mech.
,
6
(
3
), pp.
A103
A108
.
24.
Wahl
,
A. M.
,
1940
, “
Discussion: ‘The Spring Clutch’ (Wiebusch, C. F., 1939, ASME J. Appl. Mech., 6, pp. A103–A108)
,”
ASME J. Appl. Mech.
,
7
(
2
), pp.
A89
A91
.
25.
King
,
R.
, and
Monahan
,
R.
,
1999
, “
Alternator Pulley With Integral Overrunning Clutch for Reduction of Belt Noise
,”
SAE Technical Paper
, pp. 1999–01–0643.
You do not currently have access to this content.