Abstract

This article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

References

1.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
2.
Featherstone
,
R.
,
2010
, “
A Beginner’s Guide to 6-D Vectors (Part 1)
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
83
94
.
3.
Featherstone
,
R.
,
2010
, “
A Beginner’s Guide to 6-D Vectors (Part 2)
,”
IEEE Rob. Autom. Mag.
,
17
(
4
), pp.
88
99
.
4.
McCarthy
,
J.
,
1990
,
Introduction to Theoretical Kinematics
, 1st ed.,
The MIT Press
,
Cambridge, MA
.
5.
Dooley
,
J.
, and
McCarthy
,
J.
,
1991
, “
Spatial Rigid Body Dynamics Using Dual Quaternion Components
,”
Proceedings. 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
April
, IEEE Comput. Soc. Press, pp.
90
95
.
6.
Perez
,
A.
, and
McCarthy
,
J.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.
7.
Selig
,
J. M.
,
2004
, “Lie Groups and Lie Algebras in Robotics,”
Computational Noncommutative Algebra and Applications
,
Kluwer Academic Publishers
,
Dordrecht, Netherlands
, pp.
101
125
.
8.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
2nd ed. (
Monographs in Computer Science
),
Springer
,
New York, NY
.
9.
Selig
,
J. M.
, and
Bayro-Corrochano
,
E.
,
2010
, “
Rigid Body Dynamics Using Clifford Algebra
,”
Adv. Appl. Clifford Algebras
,
20
(
1
), pp.
141
154
.
10.
Yuan
,
J.
,
1988
, “
Closed-loop Manipulator Control Using Quaternion Feedback
,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
434
440
.
11.
Xian
,
B.
,
DeQueiroz
,
M.
,
Dawson
,
D.
, and
Walker
,
I.
,
2004
, “
Task-Space Tracking Control of Robot Manipulators Via Quaternion Feedback
,”
IEEE. Trans. Rob. Autom.
,
20
(
1
), pp.
160
167
.
12.
Adorno
,
B. V.
,
2011
,
Two-arm Manipulation: From Manipulators to Enhanced Human-Robot Collaboration, Ph.D. thesis, Université Montpellier 2, Montpellier, France
.
13.
Gouasmi
,
M.
,
2012
, “
Robot Kinematics Using Dual Quaternions
,”
IAES Int. J. Rob. Autom. (IJRA)
,
1
(
1
), p.
13
.
14.
Cohen
,
A.
, and
Shoham
,
M.
,
2016
, “
Application of Hyper-Dual Numbers to Multibody Kinematics
,”
J. Mech. Rob.
,
8
(
1
), pp.
2
5
.
15.
Özgür
,
E.
, and
Mezouar
,
Y.
,
2016
, “
Kinematic Modeling and Control of a Robot Arm Using Unit Dual Quaternions
,”
Rob. Auton. Syst.
,
77
, pp.
66
73
.
16.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
17.
Dantam
,
N. T.
,
2020
, “
Robust and Efficient Forward, Differential, and Inverse Kinematics Using Dual Quaternions
,”
Int. J. Rob. Researchm
,
40
(
10–11
), pp.
1087
105
.
18.
Fonseca
,
M. d. P. A.
,
Adorno
,
B. V.
, and
Fraisse
,
P.
,
2020
, “
Coupled Task-Space Admittance Controller Using Dual Quaternion Logarithmic Mapping
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6057
6064
.
19.
Marinho
,
M. M.
,
Adorno
,
B. V.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2019
, “
Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities
,”
IEEE Trans. Rob.
,
35
(
5
), pp.
1166
1185
.
20.
Quiroz-Omana
,
J. J.
, and
Adorno
,
B. V.
,
2019
, “
Whole-Body Control With (Self) Collision Avoidance Using Vector Field Inequalities
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4048
4053
.
21.
Kussaba
,
H. T.
,
Figueredo
,
L. F.
,
Ishihara
,
J. Y.
, and
Adorno
,
B. V.
,
2017
, “
Hybrid Kinematic Control for Rigid Body Pose Stabilization Using Dual Quaternions
,”
J. Franklin Inst.
,
354
(
7
), pp.
2769
2787
.
22.
Marinho
,
M. M.
,
Figueredo
,
L. F. C.
, and
Adorno
,
B. V.
,
2015
, “
A Dual Quaternion Linear-Quadratic Optimal Controller for Trajectory Tracking
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
September
, IEEE, pp.
4047
4052
.
23.
Savino
,
H. J.
,
Pimenta
,
L. C.
,
Shah
,
J. A.
, and
Adorno
,
B. V.
,
2020
, “
Pose Consensus Based on Dual Quaternion Algebra With Application to Decentralized Formation Control of Mobile Manipulators
,”
J. Franklin Institute
,
357
(
1
), pp.
142
178
.
24.
Adorno
,
B. V.
,
Fraisse
,
P.
, and
Druon
,
S.
,
2010
, “
Dual Position Control Strategies Using the Cooperative Dual Task-Space Framework
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
October
, IEEE, pp.
3955
3960
.
25.
Figueredo
,
L.
,
Adorno
,
B.
,
Ishihara
,
J.
, and
Borges
,
G.
,
2014
, “
Switching Strategy for Flexible Task Execution Using the Cooperative Dual Task-Space Framework
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
September
, IEEE, pp.
1703
1709
.
26.
Adorno
,
B. V.
,
,
A. P.
, and
Fraisse
,
P.
,
2015
, “
Kinematic Modeling and Control for Human-Robot Cooperation Considering Different Interaction Roles
,”
Robotica
,
33
(
2
), pp.
314
331
.
27.
Lana
,
E. P.
,
Adorno
,
B. V.
, and
Maia
,
C. A.
,
2015
, “
A New Algebraic Approach for the Description of Robotic Manipulation Tasks
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May
, IEEE, pp.
3083
3088
.
28.
Huang
,
T.
,
Yang
,
S.
,
Wang
,
M.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
An Approach to Determining the Unknown Twist/Wrench Subspaces of Lower Mobility Serial Kinematic Chains
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031003
.
29.
Renda
,
F.
,
Cianchetti
,
M.
,
Abidi
,
H.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2017
, “
Screw-Based Modeling of Soft Manipulators With Tendon and Fluidic Actuation
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041012
.
30.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
300–308
.
31.
Yang
,
A. T.
,
1966
, “
Acceleration Analysis of Spatial Four-Link Mechanisms
,”
J. Eng. Ind.
,
88
(
3
), p.
296
.
32.
Yang
,
A. T.
,
1967
, “
Application of Dual Quaternions to the Study of Gyrodynamics
,”
J. Eng. Ind.
,
89
(
1
), p.
137
.
33.
Yang
,
A. T.
,
1971
, “
Inertia Force Analysis of Spatial Mechanisms
,”
J. Eng. Ind.
,
93
(
1
), p.
27
.
34.
Pennock
,
G. R.
, and
Yang
,
A. T.
,
1983
, “
Dynamic Analysis of a Multi-Rigid-Body Open-Chain System
,”
J. Mech. Transmissions Autom. Des.
,
105
(
1
), p.
28
.
35.
Shoham
,
M.
, and
Brodsky
,
V.
,
1993
, “
Analysis of Mechanisms by the Dual Inertia Operator
,” Computational Kinematics, Vol. 28 of Solid Mechanics and Its Applications,
J.
Angeles
,
G.
Hommel
, and
P.
Kovács
, eds., Springer, Netherlands, Dordrecht, pp.
129
138
.
36.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,”
Front. Rob. AI
,
5
.
37.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Modeling of Spacecraft-Mounted Robot Dynamics and Control Using Dual Quaternions
,”
2018 Annual American Control Conference (ACC)
,
Milwaukee, WI
,
June
, IEEE, pp.
670
675
.
38.
Hachicho
,
O.
, and
Eldin
,
H. N.
,
2000
, “
Dual Hypercomplex Quaternions Based Recursions for Generalized Velocities, Accelerations and Forces in Robot Dynamics
,”
Syst. Control: Theory Appl.
, pp.
85
89
.
39.
Miranda de Farias
,
C.
,
da Cruz Figueredo
,
L. F.
, and
Yoshiyuki Ishihara
,
J.
,
2019
, “
Performance Study on DqRNEA—A Novel Dual Quaternion Based Recursive Newton-Euler Inverse Dynamics Algorithms
,”
2019 Third IEEE International Conference on Robotic Computing (IRC)
,
Naples, Italy
,
February
, pp.
94
101
.
40.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London., A.
,
439
(
1906
), pp.
407
410
.
41.
Hamilton
,
W. R.
,
1844
, “
II. On Quaternions; Or on a New System of Imaginaries in Algebra
,”
Phil. Mag. Ser. 3
,
25
(
163
), pp.
10
13
.
42.
Adorno
,
B. V.
,
2017
,
Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra -- Part I: Fundamentals. https://hal.archives-ouvertes.fr/hal-01478225v1https://hal.archives-ouvertes.fr/hal-01478225v1
.
43.
Kalaba
,
R. E.
, and
Udwadia
,
F. E.
,
1993
, “
Equations of Motion for Nonholonomic, Constrained Dynamical Systems Via Gauss’s Principle
,”
ASME J. Appl. Mech.
,
60
(
3
), pp.
662
668
.
44.
Bruyninckx
,
H.
, and
Khatib
,
O.
,
2000
, “
Gauss’ Principle and the Dynamics of Redundant and Constrained Manipulators
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
,
April
, Vol. 3, IEEE, pp.
2563
2568
.
45.
Redon
,
S.
,
Kheddar
,
A.
, and
Coquillart
,
S.
,
2002
, “
Gauss’ Least Constraints Principle and Rigid Body Simulations
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
,
May
, Vol. 1, IEEE, pp.
517
522
.
46.
Wieber
,
P.-B.
,
2006
, “Holonomy and Nonholonomy in the Dynamics of Articulated Motion,”
Fast Motions in Biomechanics and Robotics
, Vol.
340
,
Springer
,
Berlin/Heidelberg
, pp.
411
425
.
47.
Bouyarmane
,
K.
, and
Kheddar
,
A.
,
2012
, “
On the Dynamics Modeling of Free-Floating-Base Articulated Mechanisms and Applications to Humanoid Whole-Body Dynamics and Control
,”
2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012)
,
Osaka, Japan
,
November
, IEEE, pp.
36
42
.
48.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York, NY
.
49.
Kelly
,
R.
,
Santibanez
,
V.
, and
Loria
,
A.
,
2005
,
Control of Robot Manipulators in Joint Space
(
Advanced Textbooks in Control and Signal Processing
),
Springer-Verlag
,
London
.
50.
Storch
,
J.
, and
Gates
,
S.
,
1989
, “
Motivating Kane’s Method for Obtaining Equations of Motion for Dynamic Systems
,”
J. Guidance, Control Dyn.
,
12
(
4
), pp.
593
595
.
51.
Honein
,
T. E.
, and
O’Reilly
,
O. M.
,
2021
, “
On the Gibbs-Appell Equations for the Dynamics of Rigid Bodies
,”
ASME J. Appl. Mech.
,
88
(
7
), p.
074501
.
52.
Townsend
,
M. A.
,
1992
, “
Equivalence of Kane’s, Gibbs-Appell’s, and Lagrange’s Equations
,”
J. Guidance, Control, Dyn.
,
15
(
5
), pp.
1289
1292
.
53.
Desloge
,
E. A.
,
1987
, “
Relationship Between Kane’s Equations and the Gibbs-Appell Equations
,”
J. Guidance, Control, Dyn.
,
10
(
1
), pp.
120
122
.
54.
Levinson
,
D. A.
,
1987
, “
Comment on ‘Relationship Between Kane’s Equations and the Gibbs-Appell Equations’
,”
J. Guidance, Control, Dyn.
,
10
(
6
), pp.
593
593
.
55.
Ray
,
J. R.
,
1972
, “
Nonholonomic Constraints and Gauss’s Principle of Least Constraint
,”
Am. J. Phys.
,
40
(
1
), pp.
179
183
.
56.
Ray
,
J. R.
,
1992
, “
Geometry of Constraints and the Gauss-Appell Principle of Least Con- Straint
,”
Kuwait J. Sci.
,
19
(
1
), pp.
11
15
.
57.
Lewis
,
A. D.
,
1996
, “
The Geometry of the Gibbs-Appell Equations and Gauss’ Principle of Least Constraint
,”
Rep. Math. Phys.
,
38
(
1
), pp.
11
28
.
58.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1998
, “
The Explicit Gibbs-Appell Equation and Generalized Inverse Forms
,”
Q. Appl. Math.
,
56
(
2
), pp.
277
288
.
59.
Kane
,
T. R.
,
1983
, “
Formulation of Dynamical Equations of Motion
,”
Am. J. Phys.
,
51
(
11
), pp.
974
977
.
60.
Fierro
,
R.
, and
Lewis
,
F. L.
,
1997
, “
Control of a Nonholomic Mobile Robot: Backstepping Kinematics Into Dynamics
,”
J. Rob. Syst.
,
14
(
3
), pp.
149
163
.
61.
Adorno
,
B. V.
, and
Marques Marinho
,
M.
,
2020
, “
DQ Robotics: A Library for Robot Modeling and Control
,”
IEEE Rob. Autom. Mag.
,
28
(
3
), pp.
102
116
.
62.
Ferrari
,
A.
,
Cutti
,
A. G.
, and
Cappello
,
A.
,
2010
, “
A New Formulation of the Coefficient of Multiple Correlation to Assess the Similarity of Waveforms Measured Synchronously by Different Motion Analysis Protocols
,”
Gait Posture
,
31
(
4
), pp.
540
542
.
63.
Corke
,
P. I.
,
2017
,
Robotics, Vision and Control: Fundamental Algorithms in MATLAB
,
Springer
,
Cham, Switzerland
.
64.
Balafoutis
,
C. A.
,
1994
, “
A Survey of Efficient Computational Methods for Manipulator Inverse Dynamics
,”
J. Intell. Rob. Syst.
,
9
(
1–2
), pp.
45
71
.
65.
Hollerbach
,
J. M.
,
1980
, “
A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst. Man Cybern.
,
10
(
11
), pp.
730
736
.
66.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst. Meas. Control.
,
102
(
2
), pp.
69
76
.
67.
Miranda de Farias
,
C.
,
da Cruz Figueredo
,
L. F.
, and
Yoshiyuki Ishihara
,
J.
,
2019
, “
A Novel Dual Quaternion Based Cost Effcient Recursive Newton-Euler Inverse Dynamics Algorithm
,”
Int. J. Rob. Comput.
,
1
(
2
), pp.
144
168
.
You do not currently have access to this content.