Abstract

In this paper, the realization of any specified planar compliance with two 3R serial elastic mechanisms is addressed. Using the concept of dual elastic mechanisms, it is shown that the realization of a compliant behavior with two serial mechanisms connected in parallel is equivalent to its realization with a 6-spring fully parallel mechanism. Since the spring axes of a 6-spring parallel mechanism indicate the geometry of a dual 3R serial mechanism, a new synthesis procedure for the realization of a stiffness matrix with a 6-spring parallel mechanism is first developed. Then, this result is extended to a geometric construction-based synthesis procedure for two 3-joint serial mechanisms.

References

1.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2017
, “
Geometric Construction-Based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,”
ASME. J. Mech. Rob.
,
9
(
5
), p.
051006
.
2.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Approach to the Realization of Planar Elastic Behaviors With Mechanisms Having Four Elastic Components
,”
ASME. J. Mech. Rob.
,
10
(
4
), p.
041004
.
3.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2019
, “
Geometry Based Synthesis of Planar Compliances With Redundant Mechanisms Having Five Compliant Components
,”
Mech. Mach. Theory
,
134
, pp.
645
666
.
4.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2020
, “
Synthesis of Planar Compliances With Mechanisms Having Six Compliant Components: Geometric Approach
,”
ASME. J. Mech. Rob.
,
12
(
3
), p.
031013
.
5.
Whitney
,
D. E.
, and
Nevins
,
J. L.
,
1979
, “
What Is the Remote Center Compliance (RCC) and What Can It Do
,”
Proceedings of the 9th International Symposium and Exposition on Industrial Robots
,
Washington, DC
, pp.
135
152
.
6.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
London, UK
.
7.
Dimentberg
,
F. M.
,
1965
,
The Screw Calculus and its Applications in Mechanics.
Foreign Technology Division, Wright-Patterson Air Force Base
,
Dayton, Ohio
.
Document No. FTD-HT-23-1632-67
.
8.
Griffis
,
M.
, and
Duffy
,
J.
,
1991
, “
Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,”
ASME. J. Mech. Des.
,
113
(
4
), pp.
508
515
.
9.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME. J. Mech. Des.
,
115
(
3
), pp.
576
580
.
10.
Loncaric
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.
11.
Zefran
,
M.
, and
Kumar
,
V.
,
2002
, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME. J. Mech. Des.
,
124
(
1
), pp.
30
38
.
12.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE. Trans. Rob. Autom.
,
14
(
3
), pp.
466
475
.
13.
Roberts
,
R. G.
,
1999
, “
Minimal Realization of a Spatial Stiffness Matrix with Simple Springs Connected in Parallel
,”
IEEE. Trans. Rob. Autom.
,
15
(
5
), pp.
953
958
.
14.
Ciblak
,
N.
, and
Lipkin
,
H.
,
1999
, “
Synthesis of Cartesian Stiffness for Robotic Applications
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Detroit, MI
, pp.
2147
2152
.
15.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2002
, “
The Duality in Spatial Stiffness and Compliance As Realized in Parallel and Serial Elastic Mechanisms
,”
ASME J. Dyn. Syst., Meas. Control
,
124
(
1
), pp.
76
84
.
16.
Choi
,
K.
,
Jiang
,
S.
, and
Li
,
Z.
,
2002
, “
Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,”
IEEE. Trans. Rob. Autom.
,
18
(
3
), pp.
264
284
.
17.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Screw System Approach to Physical Realization of Stiffness Matrix with Arbitrary Rank
,”
ASME. J. Mech. Rob.
,
1
(
2
), p.
021007
.
18.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2011
, “
Realization of An Arbitrary Planar Stiffness With a Simple Symmetric Parallel Mechanism
,”
ASME. J. Mech. Rob.
,
3
(
4
), p.
041006
.
19.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
764
780
.
20.
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2016
, “
Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,”
ASME. J. Mech. Rob.
,
8
(
6
), p.
061005
.
21.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in the Special Euclidean Group SE(3)
,”
Mech. Mach. Theory
,
98
, pp.
263
281
.
22.
Su
,
H.-J.
,
Dorozhin
,
D.
, and
Vance
,
J.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME. J. Mech. Rob.
,
1
(
4
), p.
041009
.
23.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME. J. Mech. Rob.
,
3
(
3
), p.
031008
.
24.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
757
775
.
25.
Wen
,
K.
,
Shin
,
C.-B.
,
Seo
,
T.-W.
, and
Lee
,
J.-W.
,
2016
, “
Stiffness Synthesis of 3-DOF Planar 3RPR Parallel Mechanisms
,”
Robotica
,
34
(
12
), pp.
2776
2787
.
26.
Cutkosky
,
M. R.
, and
Kao
,
I.
,
1989
, “
Computing and Controlling the Compliance of a Robotic Hand
,”
IEEE. Trans. Rob. Autom.
,
5
(
2
), pp.
617
622
.
27.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2022
, “
The Relationship Between Mechanism Geometry and the Centers of Stiffness and Compliance
,”
Mech. Mach. Theory
,
167
, p.
104565
.
You do not currently have access to this content.