Abstract

Humans come into physical contact with various machines such as robots in daily life. This leads to the underlying issue of guaranteeing safety during such human-robot interactions. Thus, many devices and methods have been studied for impact damage reduction. A safety joint mechanism (SJM) using four-bar linkages has been highlighted as an impact cutoff device owing to its capabilities of nonlinear load transfer. This paper focuses on a new design and testing for a kinematic element of an SJM based on four-bar linkages to improve the impact cutoff performances. In the present work, a set of variable-length floating link designs is proposed, and the mechanism is implemented by mechanical contact surface profile shaping between the cams and followers. The performance of the cam-follower mechanism is evaluated depending on the variable length of the floating link, by using the equivalent stiffness method, which successfully quantifies the performance of the proposed mechanism. Based on this design and analysis, two SJMs having symmetrical arrangements for four numbers of cam-follower mechanisms are fabricated: one SJM has fixed-length floating links and the other has variable-length floating links. The effect of the new kinematic elements on the performance improvement is verified by comparing the absorbed impact rates of the two SJMs by impact hammer-like drop tests. Consequently, it is confirmed that the rapid length change of the floating link is the core element for improving the performance of the safety mechanism.

References

1.
Nakashima
,
S.
,
Shirai
,
T.
,
Asano
,
Y.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2018
, “
Resistance-based Self-Sensing System of Active Self-Melting Bolt Towards Autonomous Healing Structure
,” 2018 IEEE International Conference on Soft Robotics (RoboSoft),
IEEE
, pp.
88
93
.
2.
Terryn
,
S.
,
Mathijssen
,
G.
,
Brancart
,
J.
,
Verstraten
,
T.
,
Van Assche
,
G.
, and
Vanderborght
,
B.
,
2016
, “
Toward Self-Healing Actuators: A Preliminary Concept
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
736
743
.
3.
Wyrobek
,
K. A.
,
Berger
,
E. H.
,
Van der Loos
,
H. M.
, and
Salisbury
,
J. K.
,
2008
, “
Towards a Personal Robotics Development Platform: Rationale and Design of An Intrinsically Safe Personal Robot
,”
2008 IEEE International Conference on Robotics and Automation, IEEE
, pp.
2165
2170
.
4.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and “Soft-Arm” Tactics
,”
IEEE Rob. Auto. Magaz.
,
11
(
2
), pp.
22
33
.
5.
Lim
,
H.-O.
, and
Tanie
,
K.
,
2000
, “
Human Safety Mechanisms of Human-Friendly Robots: Passive Viscoelastic Trunk and Passively Movable Base
,”
Int. J. Rob. Res.
,
19
(
4
), pp.
307
335
.
6.
Jeong
,
S.-H.
,
Takahashi
,
T.
, and
Nakano
,
E.
,
2004
, “
A Safety Service Manipulator System: The Reduction of Harmful Force by a Controllable Torque Limiter
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566)
, Vol.
1
,
IEEE
, pp.
162
167
.
7.
Haddadin
,
S.
,
Albu-Schaffer
,
A.
,
De Luca
,
A.
, and
Hirzinger
,
G.
,
2008
, “
Collision Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, pp.
3356
3363
.
8.
Jung
,
B.-j.
,
Choi
,
H. R.
,
Koo
,
J. C.
, and
Moon
,
H.
,
2012
, “
Collision Detection Using Band Designed Disturbance Observer
,”
2012 IEEE International Conference on Automation Science and Engineering (CASE)
,
IEEE
, pp.
1080
1085
.
9.
De Luca
,
A.
,
Albu-Schaffer
,
A.
,
Haddadin
,
S.
, and
Hirzinger
,
G.
,
2006
, “
Collision Detection and Safe Reaction With the DLR-III Lightweight Manipulator Arm
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, pp.
1623
1630
.
10.
Flacco
,
F.
,
2012
,
Modeling and Control of Robots With Compliant Actuation
,
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, SAPIENZA Universitá di Roma
,
Rome
.
11.
Yoon
,
S.-S.
,
Kang
,
S.
,
Yun
,
S.-k.
,
Kim
,
S.-J.
,
Kim
,
Y.-H.
, and
Kim
,
M.
,
2005
, “
Safe Arm Design With Mr-Based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications
,”
J. Mech. Sci. Tech.
,
19
(
10
), pp.
1835
1845
.
12.
Kikuchi
,
T.
,
Ikeda
,
K.
,
Otsuki
,
K.
,
Kakehashi
,
T.
, and
Furusho
,
J.
,
2009
, “
Compact Mr Fluid Clutch Device for Human-Friendly Actuator
,”
J. Phys.: Conf. Seri.
,
149
, p.
012059
.
13.
Saito
,
T.
, and
Ikeda
,
H.
,
2007
, “
Development of Normally Closed Type of Magnetorheological Clutch and Its Application to Safe Torque Control System of Human-Collaborative Robot
,”
J. Intell. Mater. Sys. Struct.
,
18
(
12
), pp.
557
562
.
14.
Yoo
,
J.
,
Hyun
,
M. W.
,
Choi
,
J. H.
,
Kang
,
S.
, and
Kim
,
S.-J.
,
2009
, “
Optimal Design of a Variable Stiffness Joint in a Robot Manipulator Using the Response Surface Method
,”
J. Mech. Sci. Technol.
,
23
(
8
), pp.
2236
2243
.
15.
VAN
,
H.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs. Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE J. Rob. Auto. Magaz.
,
16
(
3
), pp.
81
94
.
16.
Laurin-Kovitz
,
K. F.
,
Colgate
,
J. E.
, and
Carnes
,
S. D.
,
1991
, “
Design of Components for Programmable Passive Impedance
,”
Proceedings. 1991 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1476
1481
.
17.
Okada
,
M.
,
Nakamura
,
Y.
, and
Ban
,
S.
,
2001
, “
Design of Programmable Passive Compliance Shoulder Mechanism
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
, Vol.
1
,
IEEE
, pp.
348
353
.
18.
Okada
,
M.
, and
Nakamura
,
Y.
,
2005
, “
Development of a Cybernetic Shoulder-a 3-dof Mechanism That Imitates Biological Shoulder Motion
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
438
444
.
19.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/robot Interaction
,”
Proceedings of the 2005 IEEE international conference on robotics and automation
,
IEEE
, pp.
526
531
.
20.
Awad
,
M. I.
,
Gan
,
D.
,
Hussain
,
I.
,
Az-Zu’bi
,
A.
,
Stefanini
,
C.
,
Khalaf
,
K.
,
Zweiri
,
Y.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2018
, “
Design of a Novel Passive Binary-Controlled Variable Stiffness Joint (BPVSJ) Towards Passive Haptic Interface Application
,”
IEEE Access
,
6
, pp.
63045
63057
.
21.
Awad
,
M. I.
,
Hussain
,
I.
,
Gan
,
D.
,
Az-zu’bi
,
A.
,
Stefanini
,
C.
,
Khalaf
,
K.
,
Zweiri
,
Y.
,
Taha
,
T.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2019
, “
Passive Discrete Variable Stiffness Joint (PDVSI-II): Modeling, Design, Characterization, and Testing Toward Passive Haptic Interface
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011005
.
22.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2014
, “
A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE/ASME Trans. Mech.
,
19
(
1
), pp.
55
63
.
23.
Choi
,
J.
,
Hong
,
S.
,
Lee
,
W.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Robot Joint With Variable Stiffness Using Leaf Springs
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
229
238
.
24.
Fukui
,
W.
,
Kobayashi
,
F.
,
Kojima
,
F.
,
Nakamoto
,
H.
,
Maeda
,
T.
,
Imamura
,
N.
,
Sasabe
,
K.
, and
Shirasawa
,
H.
,
2009
, “
Development of Multi-Fingered Universal Robot Hand With Torque Limiter Mechanism
,”
2009 35th Annual Conference of IEEE Industrial Electronics
,
IEEE
, pp.
2205
2210
.
25.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
2008 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1741
1746
.
26.
Lee
,
W.
,
Choi
,
J.
, and
Kang
,
S.
,
2009
, “
Spring-Clutch: A Safe Torque Limiter Based on a Spring and Cam Mechanism With the Ability to Reinitialize Its Position
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, pp.
5140
5145
.
27.
Eiberger
,
O.
,
Haddadin
,
S.
,
Weis
,
M.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2010
, “
On Joint Design with Intrinsic Variable Compliance: Derivation of the DLR QA-Joint
,”
2010 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1687
1694
.
28.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory.
,
43
(
10
), pp.
1332
1348
.
29.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and “Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Rob. Auto. Magaz.
,
11
(
2
), pp.
22
33
.
30.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1507
1527
.
31.
Cordero
,
C. A.
,
Carbone
,
G.
,
Ceccarelli
,
M.
,
Echávarri
,
J.
, and
Muñoz
,
J. L.
,
2014
, “
Experimental Tests in Human–Robot Collision Evaluation and Characterization of a New Safety Index for Robot Operation
,”
Mech. Mach. Theory.
,
80
, pp.
184
199
.
32.
Ayoubi
,
Y.
,
Laribi
,
M. A.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2019
, “
V2SOM: A Novel Safety Mechanism Dedicated to a Cobot’s Rotary Joints
,”
Robotics
,
8
(
1
), p.
18
.
33.
Choi
,
D.-E.
,
Lee
,
W.
,
Hong
,
S. H.
,
Kang
,
S.-C.
,
Lee
,
H.
, and
Cho
,
C.-H.
,
2014
, “
Design of Safe Joint With Variable Threshold Torque
,”
Int. J. Precis. Eng. Manuf.
,
15
(
12
), pp.
2507
2512
.
34.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The Dlr Fsj: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics Automation
,
IEEE
, pp.
5082
5089
.
35.
Kim
,
H.-S.
,
Park
,
J.-J.
,
Song
,
J.-B.
, and
Kyung
,
J.-H.
,
2010
, “
Design of Safety Mechanism for An Industrial Manipulator Based on Passive Compliance
,”
J. Mech. Sci. Technol.
,
24
(
11
), pp.
2307
2313
.
36.
Jeong
,
J.-J.
, and
Chang
,
S.-H.
,
2009
, “
Design of a Variable-Stiffness Type Safety Joint for Service Robots
,”
J. Korean Soc. Prec. Eng.
,
26
(
5
), pp.
128
134
.
You do not currently have access to this content.