Abstract

This paper focuses on the performance analysis of multi-segment continuum robots, including reachable workspace and dexterity performance. Since excellent dexterity is an important feature of continuum robots, two local indices inspired by separating robotic Jacobian matrix, namely axiality and angularity dexterity, are introduced to explore the dexterity. Then, a Monte Carlo Method is adopted to simulate the distribution of local dexterity over the workspace. On this basis, the corresponding global indices in axiality and angularity are defined to assess global dexterity performance. To investigate the optimal kinematic performance, an objective function related to the segment lengths is designed under the consideration of reachable workspace and dexterity performance. Finally, Particle Swarm Optimization (PSO) algorithm is used to solve this optimization problem successfully. The optimal length distributions for two-segment and three-segment continuum robots are discovered. Most importantly, it is found that our method can also apply to general multi-segment continuum robots.

References

1.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
2.
Walker
,
I. D.
, and
Hannan
,
M. W.
,
1999
, “
A Novel ‘elephant’s Trunk’ Robot
,”
1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399)
,
Atlanta, GA
,
Sept. 19–23
, pp.
410
415
.
3.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the Octarm Continuum Manipulator
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA 2006)
,
Orlando, FL
,
May 15–19
, pp.
2336
2341
.
4.
Del Giudice
,
G.
,
Sarli
,
N.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2016
, “
Design Considerations for Continuum Robot Actuation Units Enabling Dexterous Transurethral Bladder Cancer Resection
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol.
50152
, ASME, p.
V05AT07A030
.
5.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
209
219
.
6.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
.
7.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
43
55
.
8.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
.
9.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
.
10.
Ehsani-Seresht
,
A.
, and
Hashemi-Pour Moosavi
,
S.
,
2020
, “
Dynamic Modeling of the Cable-Driven Continuum Robots in Hybrid Position-Force Actuation Mode
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051002
.
11.
Xu
,
K.
,
Zhao
,
J.
, and
Zheng
,
X.
,
2015
, “
Configuration Comparison Among Kinematically Optimized Continuum Manipulators for Robotic Surgeries Through a Single Access Port
,”
Robotica
,
33
(
10
), pp.
2025
2044
.
12.
Li
,
Z.
,
Wu
,
L.
,
Ren
,
H.
, and
Yu
,
H.
,
2017
, “
Kinematic Comparison of Surgical Tendon-driven Manipulators and Concentric Tube Manipulators
,”
Mech. Mach. Theory
,
107
, pp.
148
165
.
13.
Wu
,
L.
,
Crawford
,
R.
, and
Roberts
,
J.
,
2016
, “
Dexterity Analysis of Three 6-dof Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
514
521
.
14.
Badescu
,
M.
, and
Mavroidis
,
C.
,
2004
, “
New Performance Indices and Workspace Analysis of Reconfigurable Hyper-Redundant Robotic Arms
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
643
659
.
15.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
16.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.
17.
Simaan
,
N.
,
Xu
,
K.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R.
, and
Flint
,
P.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.
18.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
19.
Rastegar
,
J.
, and
Perel
,
D.
,
1990
, “
Generation of Manipulator Workspace Boundary Geometry Using the Monte Carlo Method and Interactive Computer Graphics
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
452
454
.
20.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
22.
Eberhart
, and
Shi
,
Y.
,
2001
, “
Particle Swarm Optimization: Developments, Applications and Resources
,”
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)
,
Seoul, South Korea
,
May 27–30
, Vol.
1
, IEEE, pp.
81
86
.
You do not currently have access to this content.