Abstract

In this work, the lower extremity physiological parameters are recorded during normal walking gait, and the dynamical systems theory is applied to determine a stability analysis. The human walking gait pattern of kinematic and dynamical data is approximated to periodic behavior. The embedding dimension analysis of the kinematic variable's time trace and use of Taken's theorem allows us to compute a reduced-order time series that retains the essential dynamics. In conjunction with Floquet theory, this approach can help determine the system's stability characteristics. The Lyapunov–Floquet (L-F) transformation application results in constructing an invariant manifold resembling the form of a simple oscillator system. It is also demonstrated that the simple oscillator system, when re-mapped back to the original domain, reproduces the original system's time evolution (hip angle or knee angle, for example). A reinitialization procedure is suggested that improves the accuracy between the processed data and actual data. The theoretical framework proposed in this work is validated with the experiments using a motion capture system.

References

1.
Chinimilli
,
P. T.
,
Redkar
,
S.
, and
Sugar
,
T.
,
2019
, “
A Two-Dimensional Feature Space-Based Approach for Human Locomotion Recognition
,”
IEEE Sens. J.
,
19
(
11
), pp.
4271
4282
.
2.
Hurmuzlu
,
Y.
, and
Basdogan
,
C.
,
1994
, “
On the Measurement of Dynamic Stability of Human Locomotion
,”
J. Biomech. Eng.
,
116
(
1
), pp.
30
36
.
3.
Hurmuzlu
,
Y.
,
Basdogan
,
C.
, and
Stoianovici
,
D.
,
1996
, “
Kinematics and Dynamic Stability of the Locomotion of Post-Polio Patients
,”
Journal of Biomechanical Engineering
,
118
(
3
), pp.
405
411
.
4.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Phys. D Nonlinear Phenom.
,
65
(
1–2
), pp.
117
134
.
5.
Dingwell
,
J. B.
, and
Cusumano
,
J. P.
,
2000
, “
Nonlinear Time Series Analysis of Normal and Pathological Human Walking
,”
Chaos An Interdiscip. J. Nonlinear Sci.
,
10
(
4
), pp.
848
863
.
6.
Kang
,
H. G.
, and
Dingwell
,
J. B.
,
2008
, “
Effects of Walking Speed, Strength and Range of Motion on Gait Stability in Healthy Older Adults
,”
J. Biomech.
,
41
(
14
), pp.
2899
2905
.
7.
Bruijn
,
S. M.
,
Bregman
,
D. J. J.
,
Meijer
,
O. G.
,
Beek
,
P. J.
, and
van Dieën
,
J. H.
,
2012
, “
Maximum Lyapunov Exponents as Predictors of Global Gait Stability: A Modelling Approach
,”
Med. Eng. Phys.
,
34
(
4
), pp.
428
436
.
8.
Wagenaar
,
R. C.
, and
van Emmerik
,
R. E. A.
,
1994
, “
Dynamics of Pathological Gait
,”
Hum. Mov. Sci.
,
13
(
3–4
), pp.
441
471
.
9.
De La Fuente
,
J.
,
Subramanian
,
S. C.
,
Sugar
,
T. G.
, and
Redkar
,
S.
,
2020
, “
A Robust Phase Oscillator Design for Wearable Robotic Systems
,”
Rob. Auton. Syst.
,
128
, p.
103514
.
10.
Bhounsule
,
P. A.
, and
Zamani
,
A.
,
2017
, “
A Discrete Control Lyapunov Function for Exponential Orbital Stabilization of the Simplest Walker
,”
ASME J. Mech. Robot.
,
9
(
5
), p.
051011
.
11.
la Fuente
,
J.
,
Sugar
,
T. G.
, and
Redkar
,
S.
,
2017
, “
Nonlinear, Phase-Based Oscillator to Generate and Assist Periodic Motions
,”
ASME J. Mech. Robot.
,
9
(
2
), p.
024502
.
12.
Várkonyi
,
P. L.
,
2015
, “
On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion
,”
ASME J. Mech. Robot.
,
7
(
4
).
13.
Hao
,
M.
,
Zhang
,
J.
,
Chen
,
K.
,
Asada
,
H.
, and
Fu
,
C.
,
2020
, “
Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage
,”
ASME J. Mech. Robot.
,
12
(
6
), p.
061014
.
14.
Spyrakos-Papastavridis
,
E.
,
Dai
,
J. S.
,
Childs
,
P.
, and
Tsagarakis
,
N. G.
,
2018
, “
Selective-Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot
,”
ASME J. Mech. Robot.
,
10
(
3
), p.
031009
.
15.
Luxman
,
R.
, and
Zielinska
,
T.
,
2017
, “
Robot Motion Synthesis Using Ground Reaction Forces Pattern: Analysis of Walking Posture
,”
Int. J. Adv. Robot. Syst.
,
14
(
4
), p.
1729881417720873
.
16.
Azimi
,
V.
,
Nguyen
,
T. T.
,
Sharifi
,
M.
,
Fakoorian
,
S. A.
, and
Simon
,
D.
,
2018
, “
Robust Ground Reaction Force Estimation and Control of Lower-Limb Prostheses: Theory and Simulation
,”
IEEE Trans. Syst. Man, Cybern. Syst.
,
50
(
8
), pp.
3024
3035
.
17.
Almeida
,
L.
,
Santos
,
V.
, and
Silva
,
F.
,
2018
, “
A Novel Wireless Instrumented Shoe for Ground Reaction Forces Analysis in Humanoids
,”
2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)
,
Torres Vedras, Portugal
,
Apr. 25–27
, pp.
36
41
.
18.
Wu
,
X. A.
,
Huh
,
T. M.
,
Mukherjee
,
R.
, and
Cutkosky
,
M.
,
2016
, “
Integrated Ground Reaction Force Sensing and Terrain Classification for Small Legged Robots
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
1125
1132
.
19.
Baumgart
,
C.
,
Schubert
,
M.
,
Hoppe
,
M. W.
,
Gokeler
,
A.
, and
Freiwald
,
J.
,
2017
, “
Do Ground Reaction Forces During Unilateral and Bilateral Movements Exhibit Compensation Strategies Following ACL Reconstruction?
,”
Knee Surg. Sport. Traumatol. Arthrosc.
,
25
(
5
), pp.
1385
1394
.
20.
Baumgart
,
C.
,
Hoppe
,
M. W.
, and
Freiwald
,
J.
,
2017
, “
Phase-Specific Ground Reaction Force Analyses of Bilateral and Unilateral Jumps in Patients With ACL Reconstruction
,”
Orthop. J. Sport. Med.
,
5
(
6
), p.
2325967117710912
.
21.
Lanier
,
A. S.
,
Knarr
,
B. A.
,
Stergiou
,
N.
,
Snyder-Mackler
,
L.
, and
Buchanan
,
T. S.
,
2020
, “
ACL Injury and Reconstruction Affect Control of Ground Reaction Forces Produced During a Novel Task That Simulates Cutting Movements
,”
J. Orthop. Res.
,
38
(
8
), pp.
1746
1752
.
22.
Anand
,
M.
,
Seipel
,
J.
, and
Rietdyk
,
S.
,
2017
, “
A Modelling Approach to the Dynamics of Gait Initiation
,”
J. R. Soc. Interface
,
14
(
128
), p.
20170043
.
23.
Chicone
,
C.
,
2006
,
Ordinary Differential Equations with Applications
,
Springer Science & Business Media
,
New York
.
24.
Morris
,
B.
, and
Grizzle
,
J. W.
,
2009
, “
Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots
,”
IEEE Trans. Automat. Contr.
,
54
(
8
), pp.
1751
1764
.
25.
Frank
,
J.
,
Mannor
,
S.
, and
Precup
,
D.
,
2010
, “
Activity and Gait Recognition With Time-Delay Embeddings
,”
Twenty-Fourth AAAI Conference on Artificial Intelligence
,
Atlanta, GA
,
July 11–15
.
26.
Hidaka
,
S.
, and
Fujinami
,
T.
,
2013
, “
Topological Similarity of Motor Coordination in Rhythmic Movements
,”
Proceedings of the Annual Meeting of the Cognitive Science Society
,
35
(
35
), pp.
2548
2553
.
27.
Perc
,
M.
,
2005
, “
The Dynamics of Human Gait
,”
Eur. J. Phys.
,
26
(
3
), p.
525
.
28.
Miller
,
D. J.
,
Stergiou
,
N.
, and
Kurz
,
M. J.
,
2006
, “
An Improved Surrogate Method for Detecting the Presence of Chaos in Gait
,”
J. Biomech.
,
39
(
15
), pp.
2873
2876
.
29.
Scafetta
,
N.
,
Marchi
,
D.
, and
West
,
B. J.
,
2009
, “
Understanding the Complexity of Human Gait Dynamics
,”
Chaos An Interdiscip. J. Nonlinear Sci.
,
19
(
2
), p.
26108
.
30.
Decker
,
L. M.
,
Cignetti
,
F.
, and
Stergiou
,
N.
,
2010
, “
Complexity and Human Gait
,”
Rev. Andaluza Med. del Deport.
,
3
(
1
), pp.
2
12
.
31.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
,
1996
, “
Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems
,”
Journal of Vibration and Acoustics
,
118
(
2
), pp.
209
219
.
32.
Redkar
,
S.
,
2012
, “
Lyapunov Stability of Quasiperiodic Systems
,”
Math. Probl. Eng.
,
2012
.
33.
Sinha
,
S. C.
, and
Pandiyan
,
R.
,
1994
, “
Analysis of Quasilinear Dynamical Systems With Periodic Coefficients via Liapunov-Floquet Transformation
,”
Int. J. Non. Linear. Mech.
,
29
(
5
), pp.
687
702
.
34.
Hale
,
J. K.
,
2009
,
Ordinary Differential Equations
,
Dover Publications
,
Mineola, NY
.
35.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge, UK
.
36.
Takens
,
F.
,
1981
, “Detecting Strange Attractors in Turbulence,”
Dynamical Systems and Turbulence, Warwick 1980
,
Springer
,
New York
, pp.
366
381
.
37.
Eftekhari
,
A.
,
Yap
,
H. L.
,
Wakin
,
M. B.
, and
Rozell
,
C. J.
,
2018
, “
Stabilizing Embedology: Geometry-Preserving Delay-Coordinate Maps
,”
Phys. Rev. E
,
97
(
2
), p.
22222
.
38.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), p.
1134
.
39.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), p.
3403
.
40.
Leontitsis
,
A.
,
2019
,
Mutual Average Information, MATLAB Central File Exchange
, https://www.mathworks.com/matlabcentral/fileexchange/880-mutual-average-information,
Accessed March 2019
.
41.
Oh
,
S. E.
,
Choi
,
A.
, and
Mun
,
J. H.
,
2013
, “
Prediction of Ground Reaction Forces During Gait Based on Kinematics and a Neural Network Model
,”
J. Biomech.
,
46
(
14
), pp.
2372
2380
.
42.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.
43.
Zhang
,
Y.
,
Yi
,
C.
, and
Ma
,
W.
,
2009
, “
Simulation and Verification of Zhang Neural Network for Online Time-Varying Matrix Inversion
,”
Simul. Model. Pract. Theory
,
17
(
10
), pp.
1603
1617
.
You do not currently have access to this content.