Abstract

This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.

References

1.
Tomovic
,
R.
, and
Boni
,
G.
,
1962
, “
An Adaptive Artificial Hand
,”
IRE Trans. Autom. Control
,
7
(
3
), pp.
3
10
. 10.1109/TAC.1962.1105456
2.
Piazza
,
C.
,
Grioli
,
G.
,
Catalano
,
M. G.
, and
Bicchi
,
A.
,
2019
, “
A Century of Robotic Hands
,”
Annu. Rev. Control Rob. Auton. Syst.
,
2
(
1
), pp.
1
32
. 10.1146/annurev-control-060117-105003
3.
Tai
,
K.
,
EI-Sayed
,
A. R.
,
Shahriari
,
M.
,
Biglarbegian
,
M.
, and
Mahmud
,
S.
,
2016
, “
State of the Art Robotic Grippers and Applications
,”
Robotics
,
5
(
2
), p.
11
. 10.3390/robotics5020011
4.
Childress
,
D. S.
,
1985
, “
Historical Aspects of Powered Limb Prosthese
,”
Clin. Proesthet Orthot.
,
9
(
1
), pp.
2
13
.
5.
Okada
,
T.
,
1982
, “
Computer Control of Multjointed Finger System for Precise Object-Handing
,”
IEEE Trans. Syst. Man Cybern.
,
12
(
3
), pp.
289
299
. 10.1109/TSMC.1982.4308818
6.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/M.I.T. Dextrous Hand
,”
1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
, pp.
1520
1532
.
7.
Nakano
,
Y.
,
Fujie
,
M.
, and
Hosada
,
Y.
,
1984
, “
Hitachi’s Robot Hand
,”
Rob. Age
,
6
(
7
), pp.
18
20
.
8.
Caffaz
,
A.
, and
Cannata
,
G.
,
1998
, “
The Design and Development of the DIST-Hand Dextrous Gripper
,”
1998 IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
,
May 16–20
, pp.
2075
2080
.
9.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, Vol.
2
, pp.
1050
4729
.
10.
Bridgwater
,
L. B.
,
Ihrke
,
C. A.
,
Diftler
,
M. A.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Rogers
,
J. M.
,
Yayathi
,
S.
,
Askew
,
R. S.
, and
Linn
,
D. M.
,
2012
, “
The Robonaut 2 Hand—Designed to Do Work With Tools
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
3425
3430
.
11.
Liu
,
H.
,
Butterfass
,
J.
,
Knoch
,
S.
,
Meusel
,
P.
, and
Hirzinger
,
G.
,
1999
, “
A New Control Strategy for DLR’s Multisensory Articulated Hand
,”
IEEE Control Syst. Mag.
,
19
(
2
), pp.
47
54
. 10.1109/37.753935
12.
Butterfass
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dextrous Robot Hand
,”
Proceedings of the 2001 IEEE International Conference on Robotics & Automation
,
Seoul, South Korea
,
May 21–26
.
13.
Friedl
,
W.
,
Hoppner
,
H.
,
Petit
,
F.
, and
Hirzinger
,
G.
,
2011
, “
Wrist and Forearm Rotation of the DLR Hand Arm System: Mechanical Design, Shape Analysis and Experimental Validation
,”
2011 IEEElRSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1836
1842
.
14.
Dai
,
J. S.
,
Wang
,
D. L.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand—Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
. 10.1109/TRO.2009.2017138
15.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Rob.
,
8
(
3
), pp.
459
479
. 10.1142/S0219843611002538
16.
Emmanouil
,
E.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2016
, “
Spherical Trigonometry-Based Kinematics for Controlling a Dexterous Robotic Hand With an Articulated Palm
,”
Robotica
,
34
(
12
), pp.
2788
2805
. 10.1017/S0263574715000399
17.
Cui
,
L.
, and
Dai
,
J.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
. 10.1115/1.4003414
18.
Laliberte
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Rob. Control
,
4
(
3
), pp.
1
11
.
19.
Catalano
,
M.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT Softhand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
. 10.1177/0278364913518998
20.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
. 10.1177/0278364915592961
21.
Terryn
,
S.
,
Brancart
,
J.
,
Lefeber
,
D.
,
Van Assche
,
G.
, and
Vanderborght
,
B.
,
2017
, “
Self-healing Soft Pneumatic Robots
,”
Sci. Rob.
,
2
(
9
), p.
eaan4268
. 10.1126/scirobotics.aan4268
22.
Nassour
,
J.
,
Ghadiya
,
V.
,
Hugel
,
V.
, and
Hamker
,
F.
,
2018
, “
Design of New Sensory Soft Hand: Combining Airpump Actuation With Superimposed Curvature and Pressure Sensors
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, pp.
164
169
.
23.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issue
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
. 10.1177/027836498200100102
24.
Deshpande
,
A. D.
,
Xu
,
Z.
,
Weghe
,
M. J. V.
,
Brown
,
B. H.
,
Ko
,
J.
,
Chang
,
L. Y.
,
Wilkinson
,
D. D.
,
Bidic
,
S. M.
, and
Matsuoka
,
Y.
,
2013
, “
Mechanisms of the Anatomically Correct Testbed Hand
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
238
250
. 10.1109/TMECH.2011.2166801
25.
Palli
,
G.
,
Melchiorri
,
C.
,
Vassura
,
G.
,
Scarcia
,
U.
,
Moriello
,
L.
,
Berselli
,
G.
,
Cavallo
,
A.
,
Maria
,
G. D.
,
Natale
,
C.
,
Pirozzi
,
S.
,
May
,
C.
,
Ficuciello
,
F.
, and
Siciliano
,
B.
,
2014
, “
The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
799
824
. 10.1177/0278364913519897
26.
Mouri
,
T.
,
Kawasaki
,
H.
,
Yoshikawa
,
K.
,
Takai
,
J.
, and
Ito
,
S.
,
2002
, “
Anthropomorphic Robot Hand: Gifu Hand III
,”
Proceedings of the International Conference ICCAS
,
Muju Resort, Jeonbuk, Korea
,
Oct. 16–19
, pp.
1288
1293
.
27.
Ueda
,
J.
,
Ishida
,
Y.
,
Kondo
,
M.
, and
Ogasawara
,
T.
,
2005
, “
Development of the NAIST-Hand With Vision-Based Tactile Fingertip Sensor
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2332
2337
.
28.
Cerruti
,
G.
,
Chablat
,
D.
,
Gouaillier
,
D.
, and
Sakka
,
S.
,
2016
, “
ALPHA: A Hybrid Self-Adaptable Hand for a Social Humanoid Robot
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
900
906
.
29.
Zhang
,
Z.
,
Han
,
T.
,
Pan
,
J.
, and
Wang
,
Z.
,
2018
, “
CATCH-919 Hand: Design of a 9-Actuator 19-DOF Anthropomorphic Robotic Hand
,”
arXiv, 1809.04290
.
30.
Carrozza
,
M. C.
,
Cappiello
,
G.
,
Stellin
,
G.
,
Zaccone
,
F.
,
Vecchi
,
F.
,
Micera
,
S.
, and
Dario
,
P.
,
2005
, “
A Cosmetic Prosthetic Hand With Tendon Driven Under-Actuated Mechanism and Compliant Joints: Ongoing Research and Preliminary Results
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
pp.
2661
2666
.
31.
Controzzi
,
M.
,
Clemente
,
F.
,
Barone
,
D.
,
Ghionzoli
,
A.
, and
Cipriani
,
C.
,
2017
, “
The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
5
), pp.
459
468
. 10.1109/TNSRE.2016.2578980
32.
Scharff
,
R.
,
Doubrovski
,
E.
,
Poelman
,
W.
,
Jonker
,
P.
,
Wang
,
C.
, and
Geraedts
,
J.
,
2016
,
Towards Behavior Design of a 3D-Printed Soft Robotic Hand
, Vol.
17
,
C.
Laschi
,
J.
Rossiter
,
F.
Iida
,
M.
Cianchetti
, and
L.
Margheri
, eds.,
Springer
,
Cham
.
33.
Ma
,
R.
, and
Dollar
,
A.
,
2017
, “
Yale OpenHand Project: Optimizing Open-Source Hand Designs for Ease of Fabrication and Adoption
,”
IEEE Rob. Autom. Mag.
,
24
(
1
), pp.
32
40
. 10.1109/MRA.2016.2639034
34.
Kontoudis
,
G. P.
,
Liarokapis
,
M. V.
,
Zisimatos
,
A. G.
,
Mavrogiannis
,
C. I.
, and
Kyriakopoulos
,
K. J.
,
2015
, “
Open-Source, Anthropomorphic, Underactuated Robot Hands With a Selectively Lockable Differential Mechanism: Towards Affordable Prostheses
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct.2
, p.
5
.
35.
Yang
,
H.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Design and Development of a Linkage-Tendon Hybrid Driven Anthropomorphic Robotic Hand
,”
International Conference on Intelligent Robotics and Applications (ICIRA 2019)
,
Shenyang, China
,
Aug. 8–11
, pp.
117
128
.
36.
Chao
,
E. Y. S.
,
An
,
K. -N.
,
Cooney III
,
W. P.
, and
Linscheid
,
R. L.
,
1989
,
Biomechanics of the Hand
,
World Scientific
,
Singapore
.
37.
Hahn
,
P.
,
Krimmer
,
H.
,
Hradetzky
,
A.
, and
Lanz
,
U.
,
1995
, “
Quantitative Analysis of the Linkage Between the Interphalangeal Joints of the Index Finger: An In Vivo Study
,”
J. Hand Surg.
,
20
(
5
), pp.
696
699
. 10.1016/S0266-7681(05)80139-1
38.
Birglen
,
L.
,
2011
, “
The Kinematic Preshaping of Triggered Self-adaptive Linkage-Driven Robotic Fingers
,”
Mech. Sci.
,
2
(
1
), pp.
41
49
. 10.5194/ms-2-41-2011
39.
Lipkin
,
H.
,
2005
, “
A Note on Denavit-Hartenberg Notation in Robotics
,”
Proceedings of International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2015)
,
Paper No. DETC2005-85460
.
40.
Lee
,
D.-H.
,
Park
,
J.-H.
,
Park
,
S.-W.
,
Baeg
,
M.-H.
, and
Bae
,
J.-H.
,
2017
, “
KITECH-Hand: A Highly Dexterous and Modularized Robotic Hand
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
876
887
. 10.1109/TMECH.2016.2634602
41.
Sanchez-Velasco
,
L. E.
,
Arias-Montiel
,
M.
,
Guzman-Ramirez
,
E.
, and
Lugo-Gonzalez
,
E.
,
2020
, “
A Low-Cost Emg-Controlled Anthropomorphic Robotic Hand for Power and Precision Grasp
,”
Biocybern. Biomed. Eng.
,
40
(
1
), pp.
221
237
. 10.1016/j.bbe.2019.10.002
42.
Fukaya
,
N.
,
Asfour
,
T.
,
Dillmann
,
R.
, and
Toyama
,
S.
,
2013
, “
Development of a Five-Finger Dexterous Hand Without Feedback Control: The TUAT/Karlsruhe Humanoid Hand
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4533
4540
.
43.
Mnyusiwalla
,
H.
,
Vulliez
,
P.
,
Gazeau
,
J.-P.
, and
Zeghloul
,
S.
,
2015
, “
A New Dexterous Hand Based on Bio-inspired Finger Design for Inside-Hand Manipulation
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
46
(
6
), pp.
809
817
. 10.1109/TSMC.2015.2468678
44.
You
,
W. S.
,
Lee
,
Y. H.
,
Oh
,
H. S.
,
Kang
,
G.
, and
Choi
,
H. R.
,
2019
, “
Design of a 3d-Printable, Robust Anthropomorphic Robot Hand Including Intermetacarpal Joints
,”
Intell. Serv. Rob.
,
12
(
1
), pp.
1
16
. 10.1007/s11370-018-0267-8
45.
Kapandji
,
A.
,
1986
, “
Clinical Test of Apposition and Counter-Apposition of the Thumb
,”
Ann. Chir. Main.
,
5
(
1
), pp.
67
73
. 10.1016/S0753-9053(86)80053-9
46.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
. 10.1109/70.34763
47.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The GRASP Taxonomy of Human Grasp Types
,”
IEEE Trans. Human Mach. Syst.
,
46
(
1
), pp.
66
77
. 10.1109/THMS.2015.2470657
48.
Gao
,
Z.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2015
, “
Inverse Kinematics and Workspace Analysis of the Metamorphic Hand
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
5
), pp.
965
975
. 10.1177/0954406214541429
You do not currently have access to this content.