Abstract

In this paper, a complete morphing system consisting of a variable geometry truss manipulator (VGTM) is presented that is fully covered by a flexible panel skin. Two approaches are studied for the morphing control. The first one is to have the VGTM act as a driving mechanism and the flexible panels as a passive system. In this case, the VGTM is composed of active members and passive lockable members. It is shown that the morphing system can reach the desired shapes through intermediate steps. The second method is to have the flexible panels act as drivers and the VGTM as a passive supporting structure. In this case, the VGTM is only composed of passive lockable members. The morphing system can also achieve the desired poses through several steps. The control strategies of the two methods are discussed along with kinematic analysis, a comparison study is conducted to show their pros and cons, two prototypes are fabricated, and experiments are carried out to verify the feasibility of two actuation methods.

References

1.
Xi
,
F.
,
Li
,
Y.
, and
Wang
,
H.
,
2011
, “
Module-Based Method for Design and Analysis of Reconfigurable Parallel Robots
,”
Front. Mech. Eng.
,
6
(
2
), pp.
151
159
. 10.1007/s11465-011-0121-6
2.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
. 10.1016/j.mechmachtheory.2013.12.010
3.
Wang
,
J.
,
Yao
,
Y.
, and
Kong
,
X.
,
2018
, “
Reconfigurable Tri-Prism Mobile Robot With Eight Modes
,”
Robotica
,
36
(
10
), pp.
1454
1476
. 10.1017/S0263574718000498
4.
Li
,
D.
,
Zhao
,
S.
,
Da Ronch
,
A.
,
Xiang
,
J.
,
Drofelnik
,
J.
,
Li
,
Y.
,
Zhang
,
L.
,
Wu
,
Y.
,
Kintscher
,
M.
,
Monner
,
H. P.
,
Rudenko
,
A.
,
Guo
,
S.
,
Yin
,
W.
,
Kirn
,
J.
,
Storm
,
S.
, and
Breuker
,
R. D.
,
2018
, “
A Review of Modelling and Analysis of Morphing Wings
,”
Prog. Aerosp. Sci.
,
100
, pp.
46
62
. 10.1016/j.paerosci.2018.06.002
5.
Moosavian
,
A.
,
2014
, “
Variable Geometry Wing-Box: Toward a Robotic Morphing Wing
,”
Ph.D. thesis
,
Ryerson University
,
Toronto, Canada
.
6.
Ellis
,
A.
,
Sun
,
C. Z.
,
Xi
,
F.
, and
Moosavian
,
A.
,
2018
, “
A Single Actuator Mechanism for Airfoil Shape Morphing
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec
,
Aug. 26–28
.
7.
Guo
,
J. H.
,
Dai
,
L. L.
, and
Li
,
T. Q.
,
2012
, “
Application of 3D Morphing Technology in Car Styling Design
,”
Adv. Mater. Res.
,
433–440
, pp.
6908
6911
.
8.
Cuddihy
,
M. A.
, and
Rao
,
M. K.
,
2016
, “
Autonomous Vehicle With Reconfigurable Seats
”,
U.S. Patent No. 9,227,531
.
9.
Hall
,
P. S.
,
Gardner
,
P.
,
Kelly
,
J.
,
Ebrahimi
,
E.
,
Hamid
,
M. R.
,
Ghanem
,
F.
,
Herraiz-Martinez
,
F. J.
, and
Segovia-Vargas
,
D.
,
2009
, “
Reconfigurable Antenna Challenges for Future Radio Systems
,”
2009 3rd European Conference on Antennas and Propagation
,
Berlin
,
Mar. 23–27
.
10.
Valasek
,
J.
,
Tandale
,
M. D.
, and
Rong
,
J.
,
2005
, “
A Reinforcement Learning-Adaptive Control Architecture for Morphing
,”
J. Aeros. Comp. Inf. Comm.
,
2
(
4
), pp.
174
195
. 10.2514/1.11388
11.
Joo
,
J. J.
,
Sanders
,
B.
,
Johnson
,
T.
, and
Frecker
,
M. I.
,
2006
, “
Optimal Actuator Location Within a Morphing Wing Scissor Mechanism Configuration
,”
Proc. SPIE 0277-786X
,
6166
, pp.
1
12
. 10.1117/12.658830
12.
Senatore
,
G.
,
Duffour
,
P.
,
Winslow
,
P.
, and
Wise
,
C.
,
2018
, “
Shape Control and Whole-Life Energy Assessment of an ‘Infinitely Stiff’ Prototype Adaptive Structure
,”
Smart Mater. Struct.
,
27
(
1
), p.
015022
. 10.1088/1361-665X/aa8cb8
13.
Austin
,
F.
,
Rossi
,
M. J.
,
Nostrand
,
W.
,
Knowles
,
V.
, and
Jameson
,
G. A.
,
1994
, “
Static Shape Control for Adaptive Wings
,”
AIAA J.
,
32
(
9
), pp.
1895
1901
. 10.2514/3.12189
14.
Moosavian
,
A.
,
Xi
,
F.
, and
Hashemi
,
S. M.
,
2013
, “
Design and Motion Control of Fully Variable Morphing Wings
,”
J. Aircr.
,
50
(
4
), pp.
1189
1201
. 10.2514/1.C032127
15.
Wang
,
J.
,
Zhao
,
Y.
,
Xi
,
F.
, and
Tian
,
Y.
,
2020
, “
Design and Analysis of a Configuration-Based Lengthwise Morphing Structure
,”
Mech. Mach. Theory
,
147
, p.
103767
. 10.1016/j.mechmachtheory.2019.103767
16.
Howell
,
L. L.
,
2001
, “
Compliant Mechanisms
,”
Encycl. Nanotechnol.
,
10
, pp.
457
463
.
17.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
18.
Shi
,
C.
,
Luo
,
X.
,
Peng
,
Q.
,
Li
,
T.
,
Song
,
S.
,
Najdovski
,
Z.
,
Fukuda
,
T.
, and
Ren
,
H.
,
2017
, “
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey
,”
IEEE Trans. Biomed. Eng.
,
64
(
8
), pp.
1665
1678
. 10.1109/TBME.2016.2622361
19.
Lock
,
J.
,
Laing
,
G.
,
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Quasistatic Modeling of Concentric Tube Robots With External Loads
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei
,
Oct. 18–22
.
20.
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Elastic Stability of Cosserat Rods and Parallel Continuum Robots
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
718
733
. 10.1109/TRO.2017.2664879
21.
Kang
,
B.
,
Kojcev
,
R.
, and
Sinibaldi
,
E.
,
2016
, “
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
,”
PLoS One
,
11
(
2
), p.
e0150278
. 10.1371/journal.pone.0150278
22.
Wang
,
W.
,
Xi
,
F.
,
Tian
,
Y.
,
Zhao
,
Y.
, and
Li
,
Y.
,
2020
, “
Modeling and Analysis of a Planar Soft Panel Continuum Mechanism
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
044503
. 10.1115/1.4046029
23.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
24.
McCormac
,
J. C.
,
2006
,
Structural Analysis: Using Classical and Matrix Methods
,
John Wiley & Sons
,
Hoboken, NJ
.
25.
Li
,
L.
,
Tang
,
Q.
,
Tian
,
Y.
,
Wang
,
W.
,
Chen
,
W.
, and
Xi
,
F.
,
2019
, “
Investigation of Guidewire Deformation in Blood Vessels Based on an SQP Algorithm
,”
Appl. Sci.
,
9
(
2
), p.
280
. 10.3390/app9020280
26.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
You do not currently have access to this content.