Abstract

This paper provides an improvement of classic Montana's contact kinematics equations considering non-orthogonal object parameterizations. In Montana's model, the reference frame used to define the relative motion between two rigid bodies in three-dimensional space is chosen as the Gauss frame, assuming there is an orthogonal coordinate system on the object surface. To achieve global orthogonal parameterizations on arbitrarily shaped object surfaces, we define the relative motion based on the reference frame field, which is the orthogonalization of the surface natural basis at every contact point. The first- and second-order contact kinematics, including the velocity and acceleration analysis of the relative rolling, sliding, and spinning motion, are reformulated based on the reference frame field and the screw theory. We use two simulation examples to illustrate the proposed method. The examples are based on simple non-orthogonal surface parameterizations, instead of seeking for global orthogonal parameterizations on the surfaces.

References

1.
Cole
,
A. B. A.
,
Hauser
,
J. E.
, and
Sastry
,
S.
,
1989
, “
Kinematics and Control of Multifingered Hands With Rolling Contact
,”
IEEE Trans. Autom. Control
,
34
(
4
), pp.
398
404
. 10.1109/9.28014
2.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
17
32
. 10.1177/027836498800700302
3.
Cai
,
C.
, and
Roth
,
B.
,
1987
, “
On the Spatial Motion of a Rigid Body With Point Contact
,”
Proceedings of International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31
, pp.
686
695
.
4.
Li
,
Z.
, and
Canny
,
J.
,
1990
, “
Motion of Two Rigid Bodies With Rolling Constraint
,”
IEEE Trans. Robot. Autom.
,
6
(
1
), pp.
62
72
. 10.1109/70.88118
5.
Sarkar
,
N.
,
Kumar
,
V.
, and
Yun
,
X.
,
1996
, “
Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies
,”
ASME J. Appl. Mech.
,
63
(
4
), pp.
974
984
. 10.1115/1.2787255
6.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation
,”
IEEE Trans. Robot. Autom.
,
13
(
3
), pp.
364
376
. 10.1109/70.585899
7.
Marigo
,
A.
, and
Bicchi
,
A.
,
2000
, “
Rolling Bodies With Regular Surface: Controllability Theory and Applications
,”
IEEE Trans. Autom. Control
,
45
(
9
), pp.
1586
1599
. 10.1109/9.880610
8.
Luo
,
C.
,
Zhu
,
L.
, and
Ding
,
H.
,
2011
, “
Two-Sided Quadratic Model for Workpiece Fixturing Analysis
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), pp.
1
11
. 10.1115/1.4003951
9.
Visser
,
M.
,
Stramigioli
,
S.
, and
Heemskerk
,
C.
,
2002
, “
Screw Bondgraph Contact Dynamics
,”
Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30
, pp.
2239
2244
.
10.
Duindam
,
V.
, and
Stramigioli
,
S.
,
2003
, “
Modeling the Kinematics and Dynamics of Compliant Contact
,”
Proceedings of the 2003 IEEE International Conference on Robotics & Automation
,
Taipei, Taiwan
,
Sept. 14
, pp.
4029
4034
.
11.
Nelson
,
D. D.
,
Johnson
,
D. E.
, and
Cohen
,
E.
,
2005
, “
Haptic Rendering of Surface-to-Surface Sculpted Model Interaction
,”
ACM SIGGRAPH
,
Los Angeles, CA
,
July 31
.
12.
Woodruff
,
J. Z.
, and
Lynch
,
K. M.
,
2019
, “
Second-Order Contact Kinematics Between Three-Dimensional Rigid Bodies
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
085501
. 10.1115/1.4043547
13.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Classification and Kinematic Equivalents of Contact Types for Fingertip-Based Robot Hand Manipulation
,”
J. Mech. Robot.
,
8
(
4
), pp.
1
9
. 10.1115/1.4032865
14.
Chitour
,
Y.
,
Molina
,
M. G.
, and
Kokkonen
,
P.
,
2014
,
Geometric Control Theory and Sub-Riemannian Geometry
, Vol.
5
,
Springer
,
Cham, Switzerland
, pp.
103
122
.
15.
Alouges
,
F.
,
Chitour
,
Y.
, and
Long
,
R.
,
2010
, “
A Motion-Planning Algorithm for the Rolling-Body Problem
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
827
836
. 10.1109/TRO.2010.2053733
16.
Cui
,
L.
, and
Dai
,
J.
,
2010
, “
A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
383
388
. 10.1109/TRO.2010.2040201
17.
Cui
,
L.
, and
Dai
,
J.
,
2015
, “
A Polynomial Formulation of Inverse Kinematics of Rolling Contact
,”
J. Mech. Robot
,
7
(
4
), pp.
1
9
.
18.
Anitescu
,
M.
,
Cremer
,
J. F.
, and
Potra
,
F. A.
,
1996
, “
Formulating Three-Dimensional Contact Dynamics Problems
,”
J. Struct. Mech.
,
24
(
4
), pp.
405
437
. 10.1080/08905459608905271
19.
Tapp
,
K.
,
2016
,
Differential Geometry of Curves and Surfaces
,
Springer International Publishing
,
Philadelphia, PA
.
20.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
21.
Park
,
F. C.
,
Kim
,
B.
,
Jang
,
C.
, and
Hong
,
J.
,
2018
, “
Geometric Algorithms for Robot Dynamics: A Tutorial Review
,”
Appl. Mech. Rev.
,
70
(
1
), pp.
1
18
.
22.
Sauer
,
T.
,
2018
,
Numerical Analysis
,
Pearson Education
,
Hoboken, NJ
.
23.
Choudhury
,
P.
, and
Lynch
,
K. M.
,
2002
, “
Rolling Manipulation With a Single Control
,”
Int. J. Rob. Res.
,
21
(
5–6
), pp.
475
487
. 10.1177/027836402761393342
24.
Woodruff
,
J. Z.
,
Ren
,
S.
, and
Lynch
,
K. M.
,
2020
, “
Motion Planning and Feedback Control of Rolling Bodies
,”
IEEE Access
,
8
, pp.
31780
31791
. 10.1109/ACCESS.2020.2973416
You do not currently have access to this content.