Abstract

Presented in this paper is a method for modeling and simulation of a complete morphing mechanism. The said mechanism has a rigid panel morphing skin that morphs along with a driving mechanism. The said skin is made of segmented panels, inspired by fish scales. Since the gaps between these panels are undesirable, a gapless design is introduced in this paper by using shape-memory polymer (SMP) joints. This paper aims to solve two fundamental problems for the entire system: (1) motion control and (2) force control. The motion control is addressed through the kinematic modeling of two equations including (a) the passive rigid panels and (b) the passive rigid panels to the active mechanism. Force control is achieved through force modeling. This is to develop a relationship of the SMP deformations to the required actuator forces. The experiment is carried out to determine the SMP forces versus deformation, and simulations are conducted to investigate how a complete morphing mechanism behaves. It also reveals that the workspace and singularity of the original mechanism will change after covered by a morphing skin. The developed method sheds light on the design of a complete morphing mechanism.

References

1.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intelligent Mater. Systems Struct.
,
22
(
9
), pp.
823
877
. 10.1177/1045389X11414084
2.
2018
,
Morphing Wing Technologies
, 1st ed.,
A
Concilio
, ed.,
Elsevier Ltd.
3.
Wölcken
,
P
, and
Papadopoulos
,
M
,
2016
,
Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference
,
Springer International Publishing
,
Berlin, Germany
.
4.
Hughes
,
P.
,
Sincarsin
,
W.
, and
Carroll
,
K.
,
1991
, “
Trussarm—A Variable-Geometry-Truss Manipulator
,”
J. Intel. Mat. Syst. Struct.
,
2
, pp.
148
160
. 10.1177/1045389X9100200202
5.
Moosavian
,
A.
,
2014
,
Variable Geometry Wing-Box: Toward a Robotic Morphing Wing (Doctoral Dissertation), in Faculty of Engineering and Architecture Science—Aerospace
,
Ryerson University: Toronto
, Toronto
ON
.
6.
Moosavian
,
A.
,
Xi
,
F.
, and
Hashemi
,
S. M.
,
2013
, “
Design and Motion Control of Fully Variable Morphing Wings
,”
AIAA J. Aircraft
,
50
(
4
), pp.
1189
1201
. 10.2514/1.C032127
7.
Finistauri
,
A. D.
, and
Xi
,
F.
,
2009
, “
Type Synthesis and Kinematics of a Modular Variable Geometry Truss Mechanism for Aircraft Wing Morphing
,”
Proceedings of 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
.
8.
Finistauri
,
A. D.
,
Xi
,
F.
, and
Walsh
,
P.
,
2012
, “
Discretization Method for the Development of a Modular Morphing Wing
,”
AIAA J. Aircraft
,
49
(
1
), pp.
116
125
. 10.2514/1.C031382
9.
Finistauri
,
D. A.
, and
Xi
,
F.
,
2013
, “
Reconfiguration Analysis of Fully Reconfigurable Parallel Robot
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
. 10.1115/1.4024734
10.
Thill
,
C.
,
Etches
,
J.
,
Bond
,
I.
,
Potter
,
K.
, and
Weaver
,
P.
,
2008
, “
Morphing Skins
,”
Aeronautical J.
,
112
(
117
), pp.
1
23
. 10.1017/S0001924000002062
11.
Airoldi
,
A.
,
Sala
,
G.
,
Di Landro
,
L. A.
,
Bettini
,
P.
, and
Gilardelli
,
A.
,
2018
,
Morphing Wing Technologies
, 1st ed.,
A.
Concilio
,
I.
Dimino
,
L.
Lecce
, and
R.
Pecora
, eds.,
Butterworth and Heinemann
,
Oxford
, pp.
247
276
.
12.
Schorsch
,
O.
,
Nagel
,
C.
, and
Luhring
,
A.
,
2018
,
Morphing Wing Technologies
, 1st ed.,
A.
Concilio
,
I.
Dimino
,
L.
Lecce
, and
R.
Pecora
, eds.,
Butterworth and Heinemann
,
Oxford
, pp.
207
230
.
13.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2018
,
Morphing Wing Technologies
, 1st ed.,
A.
Concilio
,
I.
Dimino
,
L.
Lecce
, and
R.
Pecora
, eds.,
Butterworth and Heinemann
,
Oxford
, pp.
231
246
.
14.
Yu
,
A.
,
Xi
,
F.
, and
Moosavian
,
A.
,
2017
, “
A Shape-Morphing Mechanism With Sliding Panels
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041001
. 10.1115/1.4036221
15.
Kolarevic
,
B.
, and
Parlac
,
V.
,
2015
,
Adaptive, Responsive Building Skins. Building Dynamics Exploring Architecture of Change
,
Routledge: Taylor and Francis Group
,
London (NY)
.
16.
Kormaníková
,
L.
,
Kormaníková
,
E.
, and
Katunský
,
D.
,
2017
, “
Shape Design and Analysis of Adaptive Structures
,”
Procedia Eng.
,
190
, pp.
7
14
. 10.1016/j.proeng.2017.05.300
17.
Del Grosso
,
A. E.
, and
Basso
,
P.
,
2010
, “
Adaptive Building Skin Structures
,”
IOPscience-Smart Materials Structures
,
19
(
12
), p.
124011
. 10.1088/0964-1726/19/12/124011
18.
Moosavian
,
A.
,
Chae
,
E. J.
,
Pankonien
,
A. M.
, and
Inman
,
D. J.
,
2017
, “
A Parametric Study on a Bio-inspired Continuously Morphing Trailing Edge
,”
Proceedings of SPIE: Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
,
Portland, OR
.
19.
Moosavian
,
A.
,
Gamble
,
L. L.
,
Pankonien
,
A. M.
, and
Inman
,
D. J.
,
2016
, “
Bio-inspired Coupling of Camber and Sweep in Morphing Wings
,”
Proceedings of 2016 ASME Conference on Smart Materials
,
Stowe, VT
.
20.
Cooper
,
J. E.
,
Chekkal
,
I.
,
Cheung
,
R. C. M.
,
Wales
,
C.
,
Allen
,
N. J.
,
Lawson
,
S.
,
Peace
,
A. J.
,
Cook
,
R.
,
Standen
,
P.
,
Hancock
,
S. D.
, and
Carossa
,
G. M.
,
2015
, “
Design of a Morphing Wingtip
,”
AIAA J. Aircraft
,
52
(
5
), pp.
1394
1403
. 10.2514/1.C032861
21.
Bourdin
,
P.
,
Gatto
,
A.
, and
Friswell
,
M. I.
,
2006
, “
The Application of Variable Cant Angle Winglets for Morphing Aircraft Control
,”
Proceedings of Applied Aerodynamics Conference
,
San Francisco, CA
.
22.
Joshi
,
S. P.
,
Tidwell
,
Z.
,
Crossley
,
W. A.
, and
Ramakrishnan
,
S.
,
2004
, “
Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts
,”
Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
,
Palm Springs, CA
,
Apr. 19–22
.
23.
Rediniotis
,
O. K.
,
Wilson
,
L. N.
,
Lagoudas
,
D. C.
, and
Khan
,
M. M.
,
2002
, “
Development of a Shape-Memory-Alloy Actuated Biomimetic Hydrofoil
,”
J. Intelligent Mater. Syst. Struct.
,
13
(
1
), pp.
35
49
. 10.1177/1045389X02013001534
24.
Guo
,
X.
,
Zhao
,
Q.
, and
Xi
,
F.
,
2016
, “
Design Segmented Stiff Skin for a Morphing Wing
,”
AIAA J. Aircraft
,
53
(
4
), pp.
962
970
. 10.2514/1.C033252
25.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
26.
Gattas
,
J. M.
, and
You
,
Z.
,
2015
, “
Geometric Assembly of Rigid-Foldable Morphing Sandwich Structures
,”
Eng. Struct.
,
94
, pp.
149
159
. 10.1016/j.engstruct.2015.03.019
27.
Zhang
,
K.
,
Qiu
,
C.
, and
Jian
,
D.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot with Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
. 10.1115/1.4029494
28.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membrane in Space
,”
Proceedings of 31st Congress of International Astronautical Federation
,
New York
.
29.
Yu
,
A.
,
Xi
,
F.
, and
Li
,
B.
,
2018
, “
A Shape-Adaptive Mechanism with SMP Jointed Panels—Preliminary Study
,”
Proceedings of ReMAR 2018—International Conference on Reconfigurable Mechanisms and Robots
,
Delft, The Netherlands
, IEEE.
30.
Leng
,
J.
, and
Du
,
S.
,
2010
,
Shape-Memory Polymers and Multifunctional Composites
,
CRC Press: Taylor and Francis Group
,
Boca Raton, FL
.
31.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
. 10.1039/b615954k
32.
Yin
,
W.
,
Fu
,
T.
, and
Leng
,
J.
,
2009
, “
Structural Shape Sensing for Variable Camber Wing Using FBG Sensors
,”
Proceedings of SPIE
, 10.1117/12.812484
33.
Cramer
,
N. B.
,
Cellucci
,
D. W.
,
Formoso
,
O. B.
,
Gregg
,
C. E.
,
Jenett
,
B. E.
,
Kim
,
J. H.
,
Lendraitis
,
M.
,
Swei
,
S. S.
,
Trinh
,
G. T.
,
Trinh
,
K. V.
, and
Cheung
,
K. C.
,
2019
, “
Elastic Shape Morphing of Ultralight Structures by Programmable Assembly
,”
Smart Mater. Struct.
,
28
(
5
), p.
055006
. 10.1088/1361-665X/ab0ea2
34.
Anderson
,
L.
, and
Nielsen
,
S.
Elastic Beams in Three Dimensions, in Structural Mechanics, DCE Lecture No. 23. 2008: Aalborg University.
35.
Hibbeler
,
R. C.
,
2003
,
Mechanics of Materials
,
Pearson Education
,
Upper Saddle River, NJ
.
36.
Roark
,
R. J.
,
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress & Strain
,
McGraw-Hill
,
New York
.
37.
Hinch
,
E.
,
1991
,
Perturbation Methods. (Cambridge Texts in Applied Mathematics)
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.