Abstract

Surgical navigation of small lumens during surgery is a challenging task, requiring expert knowledge and dexterity. The challenge pertains to the manipulation of the distal tip (inside the patient) from the proximal end (outside the patient). Limitations in down-scaling tendon-based manipulation have led our group to investigate shape-memory-alloy, curvature-based actuation for small lumen navigation. We demonstrate two prototype designs with different approaches and characterize the deflection angles for use in surgical navigation. Nitinol wire was shape trained to memorize a particular curvature and assembled without using micro-fabrication techniques. By varying actuation voltage and control signal pulse width, we show controlled deflections ranging between 5 deg and 22 deg, which applies to surgical navigation. This concept improves distal control and makes the actuation of surgical actuators easier and safer. By varying voltage between 5.7 V to 6.3 V, we show the temperature generated ranging between 37 °C and 43 °C, the force generated ranging between 0.015 N and 0.021 N experimentally and 0.01 N and 0.028 N theoretically.

References

1.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S.-E.
, and
Hata
,
N.
,
2013
, “
Multi-Section Continuum Robot for Endoscopic Surgical Clipping of Intracranial Aneurysms
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Nagoya, Japan
,
Sept. 22–26
,
Springer
,
New York
, pp.
364
371
.
2.
Dash
,
D.
,
2016
, “
Guidewire Crossing Techniques in Coronary Chronic Total Occlusion Intervention: A to Z
,”
Indian Heart J.
,
68
(
3
), pp.
410
420
. 10.1016/j.ihj.2016.02.019
3.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Robot.
,
24
(
6
), pp.
1262
1273
. 10.1109/TRO.2008.2002311
4.
Kato
,
T.
,
Okumura
,
I.
,
Kose
,
H.
,
Takagi
,
K.
, and
Hata
,
N.
,
2016
, “
Tendon-Driven Continuum Robot for Neuroendoscopy: Validation of Extended Kinematic Mapping for Hysteresis Operation
,”
Int. J. Comput. Assisted Radiol. Surg.
,
11
(
4
), pp.
589
602
. 10.1007/s11548-015-1310-2
5.
Penning
,
R. S.
,
Jung
,
J.
,
Borgstadt
,
J. A.
,
Ferrier
,
N. J.
, and
Zinn
,
M. R.
,
2011
, “
Towards Closed Loop Control of a Continuum Robotic Manipulator for Medical Applications
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
,
IEEE
,
New York
, pp.
4822
4827
.
6.
Dong
,
S.
,
2012
, “
Review on Piezoelectric, Ultrasonic, and Magnetoelectric Actuators
,”
J. Adv. Dielectrics
,
02
(
01
), p.
1230001
. 10.1142/S2010135X12300010
7.
Nemir
,
D. C.
,
1989
, “
Preliminary Results on the Design of a Robotic Tentacle end Effector
,”
American Control Conference
,
Pittsburgh (PA)
,
June 21–23
,
IEEE
,
New York
, pp.
2374
2376
.
8.
Lantada
,
A. D.
,
de Blas Romero
,
A.
, and
Tanarro
,
E. C.
,
2016
, “
Micro-Vascular Shape-Memory Polymer Actuators With Complex Geometries Obtained by Laser Stereolithography
,”
Smart Mater. Struct.
,
25
(
6
), p.
065018
. 10.1088/0964-1726/25/6/065018
9.
Rodrigue
,
H.
,
Wang
,
W.
,
Kim
,
D.-R.
, and
Ahn
,
S.-H.
,
2017
, “
Curved Shape Memory Alloy-Based Soft Actuators and Application to Soft Gripper
,”
Compos. Struct.
,
176
(
1
), pp.
398
406
. 10.1016/j.compstruct.2017.05.056
10.
Bundhoo
,
V.
,
Haslam
,
E.
,
Birch
,
B.
, and
Park
,
E. J.
,
2009
, “
A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers, Part I: Design and Evaluation
,”
Robotica
,
27
(
1
), pp.
131
146
. 10.1017/S026357470800458X
11.
Hadi
,
A.
,
Akbari
,
H.
,
Tarvirdizadeh
,
B.
, and
Alipour
,
K.
,
2016
, “
Developing a Novel Continuum Module Actuated by Shape Memory Alloys
,”
Sens. Actuators, A
,
243
(
1
), pp.
90
102
. 10.1016/j.sna.2016.03.019
12.
Fu
,
Y.
,
Li
,
X.
,
Liu
,
H.
,
Liang
,
Z.
, and
Ma
,
X.
,
2006
, “
Kinematics of Micro Bending Robot Using Shape Memory Alloy for Active Catheter
,”
IEEE International Conference on Robotics and Biomimetics
,
Kunming, China
,
Dec. 17–20
,
IEEE
,
New York
, pp.
1594
1599
.
13.
Fukuda
,
T.
,
Guo
,
S.
,
Kosuge
,
K.
,
Arai
,
F.
,
Negoro
,
M.
, and
Nakabayashi
,
K.
,
1994
, “
Micro Active Catheter System With Multi Degrees of Freedom
,”
1994 IEEE International Conference on Robotics and Automation
,
San Diego (CA)
,
May 8–13
,
IEEE
,
New York
, pp.
2290
2295
.
14.
Kalairaj
,
M. S.
,
Huang
,
W. -M.
, and
Klanner
,
F.
,
2017
, “
Buttons on Demand Using Sliding Mechanism
,”
ELECTRICAL ENGINEERING AND AUTOMATION: Proceedings of the International Conference on Electrical Engineering and Automation (EEA2016)
,
Xiamen, China
,
Dec. 18–19
.
15.
Kalairaj
,
M. S.
, and
Huang
,
W. M.
,
2016
, “
Shape Memory Actuated Sliding Mechanism for Rapid Switching Between Button-Patterns for Adapted Human-Machine Interaction at Different Automatization Levels in Automobiles
,”
International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
, Vol.
90
,
Selangor, Malaysia
,
Aug. 2–3
,
EDP Sciences
, p.
01010
.
16.
Esmaeli
,
A.
,
2014
, “
New Worm Robot Structure Using the Shape-Memory Alloy
,”
Majlesi J. Electric. Eng.
,
8
(
2
), pp.
25
31
.
17.
Mineta
,
T.
,
Mitsui
,
T.
,
Watanabe
,
Y.
,
Kobayashi
,
S.
,
Haga
,
Y.
, and
Esashi
,
M.
,
2002
, “
An Active Guide Wire With Shape Memory Alloy Bending Actuator Fabricated by Room Temperature Process
,”
Sens. Actuators, A
,
97–98
(
1
), pp.
632
637
. 10.1016/S0924-4247(02)00021-3
18.
Datla
,
N. V.
, and
Hutapea
,
P.
,
2015
, “
Flexure-Based Active Needle for Enhanced Steering Within Soft Tissue
,”
ASME J. Med. Devices
,
9
(
4
), p.
041005
. 10.1115/1.4030654
19.
Veeramani
,
A. S.
,
Buckner
,
G. D.
,
Owen
,
S. B.
,
Cook
,
R. C.
, and
Bolotin
,
G.
,
2008
, “
Modeling the Dynamic Behavior of a Shape Memory Alloy Actuated Catheter
,”
Smart Mater. Struct.
,
17
(
1
), p.
015037
. 10.1088/0964-1726/17/01/015037
20.
Kabinejadian
,
F.
,
Leo
,
H.
,
Danpinid
,
A.
,
Cui
,
F.
,
Zhang
,
Z.
, and
Ho
,
P.
,
2013
, “
Particle Image Velocimetry (PIV) Flow Measurements of Carotid Artery Bifurcation With Application to a Novel Covered Carotid Stent Design
,”
World Congress on Medical Physics and Biomedical Engineering
,
Beijing, China
,
May 26–31
,
Springer
,
New York
, pp.
1441
1444
.
21.
Öchsner
,
A.
, and
Merkel
,
M.
,
2013
,
One-Dimensional Finite Elements
,
Springer
,
Heidelberg, Germany
.
22.
Seshu
,
P.
,
2003
,
Textbook of Finite Element Analysis
,
PHI Learning Pvt. Ltd
,
New Delhi, India
.
23.
Kauffman
,
P.
, and
Vondracek
,
M.
,
2005
, “
The Effect Surface Temperature Has on Kinetic Friction
,”
Phys. Teacher
,
43
(
3
), pp.
173
175
. 10.1119/1.1869429
24.
James
,
A.
, and
William
,
H.
,
1971
,
Introduction to Fluid Mechanics
,
Prentice Hall
,
New York
.
25.
Lima
,
F.
,
2011
, “
Using Surface Integrals for Checking Archimedes’ Law of Buoyancy
,”
Eur. J. Phys.
,
33
(
1
), pp.
101
113
. 10.1088/0143-0807/33/1/009
26.
Zastawny
,
M.
,
Mallouppas
,
G.
,
Zhao
,
F.
, and
Van Wachem
,
B.
,
2012
, “
Derivation of Drag and Lift Force and Torque Coefficients for Non-Spherical Particles in Flows
,”
Int. J. Multiphase Flow
,
39
(
1
), pp.
227
239
. 10.1016/j.ijmultiphaseflow.2011.09.004
27.
Fukuhara
,
T.
,
Hida
,
K.
,
Manabe
,
Y.
,
Munemasa
,
M.
,
Matsubara
,
H.
,
Akao
,
I.
,
Namba
,
Y.
, and
Kuyama
,
H.
,
2007
, “
Reduced Flow Velocity in the Internal Carotid Artery Independently of Cardiac Hemodynamics in Patients With Cerebral Ischemia
,”
J. Clin. Ultrasound
,
35
(
6
), pp.
314
321
. 10.1002/jcu.20332
28.
Kim
,
Y.-T.
,
Kim
,
D.-E.
,
Yang
,
S.
, and
Yoon
,
E.-S.
,
2014
, “
Design of Endoscopic Micro-Robotic End Effectors: Safety and Performance Evaluation Based on Physical Intestinal Tissue Damage Characteristics
,”
Biomed. Microdevices
,
16
(
3
), pp.
397
413
. 10.1007/s10544-014-9843-7
29.
Lee
,
J.-H.
,
Chung
,
Y. S.
, and
Rodrigue
,
H.
,
2019
, “
Long Shape Memory Alloy Tendon-Based Soft Robotic Actuators and Implementation As a Soft Gripper
,”
Sci. Rep.
,
9
(
1
), pp.
1
12
. 10.1038/s41598-018-37186-2
30.
Sivaperuman Kalairaj
,
M.
,
Banerjee
,
H.
,
Lim
,
C. M.
,
Chen
,
P.-Y.
, and
Ren
,
H.
,
2019
, “
Hydrogel-Matrix Encapsulated Nitinol Actuation With Self-Cooling Mechanism
,”
RSC Adv.
,
9
(
59
), pp.
34244
34255
. 10.1039/C9RA05360C
31.
Fong
,
J.
,
Xiao
,
Z.
, and
Takahata
,
K.
,
2015
, “
Wireless Implantable Chip With Integrated Nitinol-Based Pump for Radio-Controlled Local Drug Delivery
,”
Lab Chip
,
15
(
4
), pp.
1050
1058
. 10.1039/C4LC01290A
32.
Cheng
,
S. S.
,
Kim
,
Y.
, and
Desai
,
J. P.
,
2017
, “
Modeling and Characterization of Shape Memory Alloy Springs With Water Cooling Strategy in a Neurosurgical Robot
,”
J. Intell. Mater. Syst. Struct.
,
28
(
16
), pp.
2167
2183
. 10.1177/1045389X16685443
33.
Cheng
,
S. S.
,
Kim
,
Y.
, and
Desai
,
J. P.
,
2017
, “
New Actuation Mechanism for Actively Cooled SMA Springs in a Neurosurgical Robot
,”
IEEE Trans. Robot.
,
33
(
4
), pp.
986
993
. 10.1109/TRO.2017.2679199
34.
Jayender
,
J.
,
Patel
,
R. V.
,
Nikumb
,
S.
, and
Ostojic
,
M.
,
2008
, “
Modeling and Control of Shape Memory Alloy Actuators
,”
IEEE Trans. Control Syst. Technol.
,
16
(
2
), pp.
279
287
. 10.1109/TCST.2007.903391
35.
Wang
,
Y.-F.
,
Su
,
C.-Y.
,
Hong
,
H.
, and
Hu
,
Y.-M.
,
2007
, “
Modeling and Compensation for Hysteresis of Shape Memory Alloy Actuators With the Preisach Representation
,”
2007 IEEE International Conference on Control and Automation
,
Roma, Italy
,
April 10–14
,
IEEE
,
New York
, pp.
239
244
.
36.
Ahn
,
K. K.
, and
Kha
,
N. B.
,
2006
, “
Improvement of the Performance of Hysteresis Compensation in Sma Actuators by Using Inverse Preisach Model in Closed-Loop Control System
,”
J. Mech. Sci. Technol.
,
20
(
5
), pp.
634
642
. 10.1007/BF02915980
37.
Cruz-Hernandez
,
J. M.
, and
Hayward
,
V.
,
1998
,”
An Approach to Reduction of Hysteresis in Smart Materials
,”
1998 IEEE International Conference on Robotics and Automation
, Vol.
2
,
Leuven, Belgium
,
May 16–20
,
IEEE
,
New York
, pp.
1510
1515
.
38.
Tanaka
,
M.
,
Wang
,
F.
,
Abe
,
K.
,
Arai
,
Y.
,
Nakagawa
,
H.
, and
Chonan
,
S.
,
2006
, “
A Closed-Loop Transcutaneous Power Transmission System with Thermal Control for Artificial Urethral Valve Driven by Sma actuator
,”
J. Intell. Mater. Syst. Struct.
,
17
(
8–9
), pp.
779
786
. 10.1177/1045389X06055832
You do not currently have access to this content.