Abstract

This paper presents a design concept for gravity compensation of planar articulated robotic arms using a series of gear-slider mechanisms with springs. The spring-attached gear-slider mechanism has one degree-of-freedom (DOF) of motion, which can serve as a gear-spring module (GSM) to be installed onto the robot joints for leveraging the gravitational energy of the robot arm. The proposing GSM-based design is featured by its structure compactness, less assemblage effort, ease of modularization, and high performance for gravity compensation of articulated robotic manipulators. As a key part of the design, the stiffness of the spring in the GSM can be determined through either a design optimization or an analytical approximation to perfect balancing. The analyses on several 1-, 2-, and 3-DOF GSM-based robot arms illustrate that the analytical approximation to perfect balancing can reach nearly the same performance as provided through the design optimization. The power loss due to the gear contact is considered when evaluating the gravity compensation performance. A formula for spring stiffness correction is suggested for taking the power loss into account. An experimental study on a one-DOF GSM-based robot arm was performed, which shows that a power reduction rate of 86.5% is attained by the actuation motor when the GSM is installed on the robot arm.

References

1.
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1315
1328
. 10.1007/s00170-014-6737-z
2.
Liu
,
A.
,
Liu
,
H.
,
Yao
,
B.
,
Xu
,
W.
, and
Yang
,
M.
,
2018
, “
Energy Consumption Modeling of Industrial Robot Based on Simulated Power Data and Parameter Identification
,”
Adv. Mech. Eng.
,
10
(
5
), pp.
1
11
. 10.1177/1687814018773852
3.
Plooij
,
M.
,
Wisse
,
M.
, and
Vallery
,
H.
,
2016
, “
Reducing the Energy Consumption of Robots Using the Bidirectional Clutched Parallel Elastic Actuator
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1512
1523
. 10.1109/TRO.2016.2604496
4.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
. 10.1080/01691864.2015.1090334
5.
Boisclair
,
J.
,
Richard
,
P.-L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2017
, “
Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
457
464
. 10.1109/TMECH.2016.2614386
6.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
. 10.1115/1.3147192
7.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
,
May 16–20
, pp.
2287
2294
.
8.
Kuo
,
C.-H.
,
Nguyen-Vu
,
L.
, and
Chou
,
L.-T.
,
2018
, “
Static Balancing of a Reconfigurable Linkage With Switchable Mobility by Using a Single Counterweight
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
9.
Van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
. 10.1016/j.mechmachtheory.2016.09.010
10.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. thesis
,
Department of Mechanical Engineering, Delft University of Technology
,
Delft, The Netherlands
.
11.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
. 10.1115/1.4036218
12.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
. 10.1115/1.4035561
13.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
. 10.1115/1.4029789
14.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
. 10.1016/S0094-114X(98)00031-7
15.
Laliberté
,
T.
,
Gosselin
,
C. M.
, and
Jean
,
M.
,
1999
, “
Static Balancing of 3-DOF Planar Parallel Mechanisms
,”
IEEE/ASME Trans. Mechatronics
,
4
(
4
), pp.
363
377
. 10.1109/3516.809515
16.
Martini
,
A.
,
Troncossi
,
M.
, and
Rivola
,
A.
,
2019
, “
Algorithm for the Static Balancing of Serial and Parallel Mechanisms Combining Counterweights and Springs: Generation, Assessment and Ranking of Effective Design Variants
,”
Mech. Mach. Theory
,
137
, pp.
336
354
. 10.1016/j.mechmachtheory.2019.03.031
17.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
, and
Laliberte
,
T.
,
2000
, “
Static Balancing of Spatial Parallel Platform Mechanisms—Revisited
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
43
51
. 10.1115/1.533544
18.
Martini
,
A.
,
2018
, “
Gravity Compensation of a 6-UPS Parallel Kinematics Machine Tool Through Elastically Balanced Constant-Force Generators
,”
FME Trans.
,
46
(
1
), pp.
10
16
. 10.5937/fmet1801010M
19.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
. 10.1115/1.4041213
20.
Hsiu
,
W.-H.
,
Syu
,
F.-C.
, and
Kuo
,
C.-H.
,
2015
, “
Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
9
), pp.
1671
1685
. 10.1177/0954406214546365
21.
Takesue
,
N.
,
Ikematsu
,
T.
,
Murayama
,
H.
, and
Fujimoto
,
H.
,
2011
, “
Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)
,”
J. Rob. Mechatronics
,
23
(
2
), pp.
249
257
. 10.20965/jrm.2011.p0249
22.
Lee
,
G.
,
Lee
,
D.
, and
Oh
,
Y.
,
2018
, “
One-Piece Gravity Compensation Mechanism Using Cam Mechanism and Compression Spring
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
5
(
3
), pp.
415
420
. 10.1007/s40684-018-0044-3
23.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
. 10.1016/j.mechrescom.2008.12.005
24.
Hung
,
Y.-C.
, and
Kuo
,
C.-H.
,
2017
, “A Novel One-DoF Gravity Balancer Based on Cardan Gear Mechanism,”
New Trends in Mechanism and Machine Science
,
Springer Nature
,
Cham, Switzerland
, pp.
261
268
.
25.
Bijlsma
,
B. G.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design of a Compact Gravity Equilibrator With an Unlimited Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061003
. 10.1115/1.4037616
26.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
. 10.1115/1.4043049
27.
Nguyen
,
H.-N.
, and
Shieh
,
W.-B.
,
2018
, “On the Design of the Gravity Balancer Using Scotch Yoke Derivative Mechanism,”
New Advances in Mechanism and Machine Science
,
Springer Nature
,
Cham, Switzerland
, pp.
13
25
.
28.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
Apr. 9–11
, pp.
1536
1541
.
29.
Endo
,
G.
,
Yamada
,
H.
,
Yajima
,
A.
,
Ogata
,
M.
, and
Hirose
,
S.
,
2010
, “
A Passive Weight Compensation Mechanism With a Non-Circular Pulley and a Spring
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
3843
3848
.
30.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2014
, “
Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041009
. 10.1115/1.4027513
31.
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2014
, “
Multi-DOF Counterbalance Mechanism for a Service Robot Arm
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1756
1763
. 10.1109/TMECH.2014.2308312
32.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1308
1314
. 10.1109/TMECH.2017.2681102
33.
Uemura
,
M.
,
Mitabe
,
Y.
, and
Kawamura
,
S.
,
2019
, “
Simultaneous Gravity and Gripping Force Compensation Mechanism for Lightweight Hand-Arm Robot With Low-Reduction Reducer
,”
Robotica
,
37
(
6
), pp.
1090
1103
. 10.1017/S0263574718001479
34.
Kim
,
S.-H.
, and
Cho
,
C.-H.
,
2017
, “
Static Balancer of a 4-DOF Manipulator With Multi-DOF Gravity Compensators
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4875
4885
. 10.1007/s12206-017-0935-1
35.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
36.
Ahn
,
K.-H.
,
Lee
,
W.-B.
, and
Song
,
J.-B.
,
2016
, “
Reduction in Gravitational Torques of an Industrial Robot Equipped with 2 DOF Passive Counterbalance Mechanisms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4344
4349
.
37.
Kim
,
H.-S.
,
Min
,
J.-K.
, and
Song
,
J.-B.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
230
235
. 10.1109/TRO.2015.2501746
38.
Vu
,
L. N.
, and
Kuo
,
C.-H.
,
2019
, “
A Gear-Slider Gravity Compensation Mechanism: Design and Experimental Study
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)
,
Anaheim, CA
,
Aug. 18–21
,
Paper No. DETC2019-97602
.
39.
Linh
,
N. V.
, and
Kuo
,
C.-H.
,
2019
, “
Performance Evaluation of a Class of Gravity-Compensated Gear-Spring Planar Articulated Manipulators
,”
The 6th IFToMM International Symposium on Robotics and Mechatronics (ISRM)
,
Taipei, Taiwan
,
Oct. 28–30
, pp.
29
38
. https://doi.org/10.1007/978-3-030-30036-4_3
40.
Diez-Ibarbia
,
A.
,
del Rincon
,
A. F.
,
Iglesias
,
M.
,
De-Juan
,
A.
,
Garcia
,
P.
, and
Viadero
,
F.
,
2016
, “
Efficiency Analysis of Spur Gears With a Shifting Profile
,”
Meccanica
,
51
(
3
), pp.
707
723
. 10.1007/s11012-015-0209-x
41.
Diez-Ibarbia
,
A.
,
Fernandez-Del-Rincon
,
A.
,
Garcia
,
P.
,
De-Juan
,
A.
,
Iglesias
,
M.
, and
Viadero
,
F.
,
2018
, “
Assessment of Load Dependent Friction Coefficients and Their Influence on Spur Gears Efficiency
,”
Meccanica
,
53
(
1–2
), pp.
425
445
. 10.1007/s11012-017-0736-8
42.
Höhn
,
B.-R.
,
2010
, “
Improvements on Noise Reduction and Efficiency of Gears
,”
Meccanica
,
45
(
3
), pp.
425
437
. 10.1007/s11012-009-9251-x
43.
Ohlendorf
,
H.
,
1958
, “
Verlustleistung Und Erwärmung Von Stirnrädern
,”
Ph.D. thesis
,
Department of Mechanical Engineering, Technical University of Munich
,
Munich, Germany
.
44.
Niemann
,
G.
, and
Winter
,
H.
,
2003
,
Maschinenelemente: Band 2: Getriebe Allgemein, Zahnradgetriebe-Grundlagen, Stirnradgetriebe
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.