Abstract

This paper proposes a continuum robot that can be controlled automatically using image recognition. The proposed robot can operate in narrower spaces than the existing robots composed of links and joints. In addition, because it is automatically controlled through image recognition, the robot can be operated irrespective of the human controller's skill level. The manipulator is divided into two stages, with three wires connected to each stage to minimize the energy used to control the manipulator posture. The manipulator's posture is controlled by adjusting the length of the wire, similar to the relaxation and contraction of the muscles. Denavit–Hartenberg transformation and the Monte Carlo method were used to analyze the robot's kinematics and workspace. In a performance test, an experimental plate with nine targets was fabricated and the manipulator speed was adjusted to 5, 10, and 20 mm/s. Experimental results show that the manipulator was automatically controlled and reached all targets, with errors of 2.58, 3.28, and 9.18 mm.

References

1.
Wang
,
A. H.
,
Yu
,
H. N.
,
Wang
,
D. Y.
, and
Deng
,
M. C.
,
2015
, “
Robot Arm With Micro-Hand Robust Control Design Using Operator-Based Robust Right Coprirne Factorization Approach
,”
International Conference on Advanced Mechatronic Systems (ICAMechS)
,
Beijing
,
Aug. 22–24
, pp.
577
582
.
2.
Sunny
,
T. D.
,
Aparna
,
T.
,
Neethu
,
P.
,
Venkateswaran
,
J.
,
Vishnuprita
,
V.
, and
Vyas
,
P. S.
,
2016
, “
Robotic Arm With Brain—Computer Interfacing
,”
Proc. Technol.
,
24
, pp.
1089
1096
. 10.1016/j.protcy.2016.05.241
3.
Sagar
,
S.
,
Alok
,
S.
,
Kamal
,
S.
, and
Namita
,
S.
,
2013
, “
Telemanipulation of an Industrial Robotic Arm Using Gesture Recognition With Kinect, Control, Automation
,”
International Conference on Robotics and Embedded Systems (CARE)
,
Jabalpur
,
Dec. 16–18
, pp.
1
6
.
4.
Vincenzo
,
L.
,
Luigi
,
V.
, and
Bruno
,
S.
,
2007
, “
An Open Architecture for Sensory Feedback Control of a Dual-Arm Industrial Robotic Cell
,”
Ind. Rob.
,
34
(
1
), pp.
46
53
. 10.1108/01439910710718441
5.
Popa
,
L.
, and
Popa
,
V.
,
2017
, “
An Innovative Approach for Modeling and Simulation of an Automated Industrial Robotic Arm Operated Electro-Pneumatically
,”
Mater. Sci. Eng.
,
227
, pp.
1
13
. 10.1088/1757-899x/227/1/012097
6.
Walker
,
I. D.
,
2013
, “
Continuous Backbone “Continuum” Robot Manipulators
,”
ISRN Rob.
,
2013
, pp.
1
19
. 10.5402/2013/726506
7.
Li
,
M.
,
Kang
,
R.
,
Geng
,
S.
, and
Guglielmino
,
E.
,
2017
, “
Design and Control of a Tendon-Driven Continuum Robot
,”
Trans. Inst. Meas. Control
,
40
(
11
), pp.
3263
3272
. 10.1177/0142331216685607
8.
Liu
,
N.
,
Christos
,
B.
, and
Yang
,
G.
,
2016
, “
Design and Analysis of a Wire-Driven Flexible Manipulator for Bronchoscopic Interventions
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm
,
May 16–21
, pp.
4058
4063
.
9.
Zheng
,
L.
, and
Ruxu
,
D.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
209
219
.
10.
Kang
,
B. J.
,
Kojcev
,
R.
,
Sinibaldi
,
E.
, and
Buiu
,
C.
,
2016
, “
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
,”
PLoS One
,
11
(
2
), pp.
1
16
. 10.1371/journal.pone.0150278
11.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Rob. Comput. Integr. Manuf.
,
44
, pp.
218
229
. 10.1016/j.rcim.2016.09.004
12.
Chen
,
G.
,
Pham
,
M. T.
, and
Redarce
,
T.
,
2009
, “
Sensor-Based Guidance Control of a Continuum Robot for a Semi-Autonomous Colonoscopy
,”
Rob. Auton. Syst.
,
57
(
6/7
), pp.
712
722
. 10.1016/j.robot.2008.11.001
13.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Transactions on Robotics: A Publication of the IEEE Robotics and Automation Society
,
22
(
1
), pp.
43
55
. 10.1016/j.robot.2008.11.001
14.
Qu
,
T.
,
Chen
,
J.
,
Shen
,
S.
,
Xiao
,
Z.
,
Yue
,
Z.
, and
Lau
,
H. Y. K.
,
2016
, “
Motion Control of a Bio-Inspired Wire-Driven Multi-Backbone Continuum Minimally Invasive Surgical Manipulator
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao
,
Dec. 3–7
, pp.
1989
1995
.
15.
Rastegar
,
J.
, and
Fardanesh
,
B.
,
1990
, “
Manipulation Workspace Analysis Using the Monte Carlo Method
,”
Mech. Mach. Theory
,
25
(
2
), pp.
233
239
. 10.1016/0094-114X(90)90124-3
You do not currently have access to this content.