Abstract

In this paper, a novel transformable leg-wheel mechanism is proposed. It has three active joints, among which the hip roll joint is directly driven, the hip pitch joint is driven by gear transmission, and the knee joint is driven by synchronous belt transmission. All the actuators are mounted on the body to reduce the weight of the leg-wheel mechanism as possible, so that the motion of the leg-wheel mechanism will be slightly affected by the inertia. The proposed mechanism has two characteristics, the big wheel radius and the reduced actuator. The design and kinematics modeling methods of the leg-wheel mechanism are described. A half-a-heart shape trajectory is proposed to plan the foot motion of the leg-wheel mechanism in the legged locomotion. To make the locomotion mode transition smooth, the transition strategy is designed. Simulation and experimental results verify the feasibility of the proposed leg-wheel mechanism.

References

1.
Luo
,
Z.
,
Shang
,
J.
,
Wei
,
G.
, and
Ren
,
L.
,
2018
, “
A Reconfigurable Hybrid Wheel-Track Mobile Robot Based on Watt II Six-Bar Linkage
,”
Mech. Mach. Theory
,
128
, pp.
16
32
.
2.
Raghavan
,
V. S.
,
Kanoulas
,
D.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G.
,
2020
, “
Agile Legged-Wheeled Reconfigurable Navigation Planner Applied on the CENTAURO Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
1424
1430
.
3.
Wang
,
C. W.
,
Ma
,
K.
,
Yang
,
L.
,
Ma
,
H. W.
,
Xue
,
X. S.
, and
Tian
,
H. B.
,
2018
, “
Simulation and Experiment on Obstacle-Surmounting Performance of Four Swing Arms and Six Tracked Robot Under Unilateral Step Environment
,”
Trans. Chin. Soc. Agric. Eng.
,
34
(
10
), pp.
46
53
.
4.
Bruzzone
,
L.
,
Baggetta
,
M.
,
Nodehi
,
S. E.
,
Bilancia
,
P.
, and
Fanghella
,
P.
,
2021
, “
Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot
,”
Machines
,
9
(
1
), p.
10
.
5.
Schwarz
,
M.
,
Rodehutskors
,
T.
,
Droeschel
,
D.
,
Beul
,
M.
,
Schreiber
,
M.
,
Araslanov
,
N.
,
Ivanov
,
I.
,
Lenz
,
C.
,
Razlaw
,
J
, et al
,
2017
, “
NimbRo Rescue: Solving Disaster-Response Tasks With the Mobile Manipulation Robot Momaro
,”
J. Field Robot.
,
34
(
2
), pp.
400
425
.
6.
Medeiros
,
V. S.
,
Jelavic
,
E.
,
Bjelonic
,
M.
,
Siegwart
,
R.
,
Meggiolaro
,
M. A.
, and
Hutter
,
M.
,
2020
, “
Trajectory Optimization for Wheeled-Legged Quadrupedal Robots Driving in Challenging Terrain
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4172
4179
.
7.
Lauria
,
M.
,
Piguet
,
Y.
, and
Siegwart
,
R.
,
2002
, “
Octopus: An Autonomous Wheeled Climbing Robot
,”
Proceedings of the Fifth International Conference on Climbing and Walking Robots
,
Paris, France
,
Sept. 25–27
, pp.
315
322
.
8.
Xu
,
K.
, and
Ding
,
X.
,
2013
, “
Typical Gait Analysis of a Six-Legged Robot in the Context of Metamorphic Mechanism Theory
,”
Chin. J. Mech. Eng.
,
26
(
4
), pp.
771
783
.
9.
Jung
,
T.
,
Lim
,
J.
,
Bae
,
H.
,
Lee
,
K. K.
,
Joe
,
H. M.
, and
Oh
,
J. H.
,
2018
, “
Development of the Humanoid Disaster Response Platform DRC-HUBO+
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
1
17
.
10.
Wang
,
S.
,
Chen
,
Z.
,
Li
,
J.
,
Wang
,
J.
,
Li
,
J.
, and
Zhao
,
J.
,
2022
, “
Flexible Motion Framework of the Six Wheel-Legged Robot: Experimental Results
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2246
2257
.
11.
Cui
,
L.
,
Wang
,
S.
,
Zhang
,
J.
,
Zhang
,
D.
,
Lai
,
J.
,
Zheng
,
Y.
,
Zhang
,
Z.
, and
Jiang
,
Z. P.
,
2021
, “
Learning-Based Balance Control of Wheel-Legged Robots
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7667
7674
.
12.
Klemm
,
V.
,
Morra
,
A.
,
Salzmann
,
C.
,
Tschopp
,
F.
,
Bodie
,
K.
,
Gulich
,
L.
,
Küng
,
N.
, et al
,
2019
, “
Ascento: A Two-Wheeled Jumping Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
IEEE
, pp.
7515
7521
.
13.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), pp.
15
31
.
14.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design of Articulated Leg–Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
.
15.
Yun
,
S. H.
,
Park
,
J.
,
Seo
,
J.
, and
Kim
,
Y. J.
,
2021
, “
Development of an Agile Omnidirectional Mobile Robot With GRF Compensated Wheel-Leg Mechanisms for Human Environments
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8301
8308
.
16.
Endo
,
G.
, and
Hirose
,
S.
,
2012
, “
Study on Roller-Walker—Improvement of Locomotive Efficiency of Quadruped Robots by Passive Wheels
,”
Adv. Rob.
,
26
(
8
), pp.
969
988
.
17.
Geilinger
,
M.
,
Poranne
,
R.
,
Desai
,
R.
,
Thomaszewski
,
B.
, and
Coros
,
S.
,
2018
, “
Skaterbots: Optimization-Based Design and Motion Synthesis for Robotic Creatures With Legs and Wheels
,”
ACM Trans. Grap.
,
37
(
4
), pp.
1
12
.
18.
Chen
,
J.
,
Xu
,
K.
, and
Ding
,
X.
,
2020
, “
Roller-Skating of Mammalian Quadrupedal Robot With Passive Wheels Inspired by Human
,”
IEEE/ASME Trans. Mechatron.
,
26
(
3
), pp.
1624
1634
.
19.
Lacagnina
,
M.
,
Muscato
,
G.
, and
Sinatra
,
R.
,
2003
, “
Kinematics, Dynamics and Control of a Hybrid Robot Wheeleg
,”
Rob. Auton. Syst.
,
45
(
3
), pp.
161
180
.
20.
Lu
,
D.
,
Dong
,
E.
,
Liu
,
C.
,
Xu
,
M.
, and
Yang
,
J.
,
2016
, “
Generation and Analyses of the Reinforced Wave Gait for a Mammal-Like Quadruped Robot
,”
J. Intell. Robot. Syst.
,
82
(
1
), pp.
51
68
.
21.
Karumanchi
,
S.
,
Edelberg
,
K.
,
Baldwin
,
I.
,
Nash
,
J.
,
Reid
,
J.
,
Bergh
,
C.
,
Leichty
,
J.
, et al
,
2017
, “
Team RoboSimian: Semi-Autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals
,”
J. Field Rob.
,
34
(
2
), pp.
305
332
.
22.
Deng
,
Y.
,
Hua
,
Y.
,
Napp
,
N.
, and
Petersen
,
K.
,
2019
, “
A Compiler for Scalable Construction by the TERMES Robot Collective
,”
Rob. Auton. Syst.
,
121
, p.
103240
.
23.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Gorb
,
S. N.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2007
, “
Passive Foot Design and Contact Area Analysis for Climbing Mini-Whegs
,”
IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
1274
1279
.
24.
Herbert
,
S. D.
,
Drenner
,
A.
, and
Papanikolopoulos
,
N.
,
2008
, “
Loper: A Quadruped-Hybrid Stair Climbing Robot
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
IEEE
, pp.
799
804
.
25.
Hunt
,
A. J.
,
Bachmann
,
R. J.
,
Murphy
,
R. R.
, and
Quinn
,
R. D.
,
2011
, “
A Rapidly Reconfigurable Robot for Assistance in Urban Search and Rescue
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
IEEE
, pp.
209
214
.
26.
Eich
,
M.
,
Grimminger
,
F.
, and
Kirchner
,
F.
,
2008
, “
A Versatile Stair-Climbing Robot for Search and Rescue Applications
,”
2008 IEEE International Workshop on Safety, Security and Rescue Robotics
,
Sendai, Japan
,
Oct. 21–24
, pp.
35
40
.
27.
Jeans
,
J. B.
, and
Hong
,
D.
,
2009
, “
IMPASS: Intelligent Mobility Platform With Active Spoke System
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1605
1606
.
28.
Sun
,
T.
,
Xiang
,
X.
,
Su
,
W.
,
Wu
,
H.
, and
Song
,
Y.
,
2017
, “
A Transformable Wheel-Legged Mobile Robot: Design, Analysis and Experiment
,”
Rob. Auton. Syst.
,
98
, pp.
30
41
.
29.
Shen
,
Y.
,
Zhang
,
G.
,
Tian
,
Y.
, and
Ma
,
S.
,
2018
, “
Development of a Wheel-Paddle Integrated Quadruped Robot for Rough Terrain and Its Verification on Hybrid Mode
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4062
4067
.
30.
Clark
,
A. J.
,
Cissell
,
K. A.
, and
Moore
,
J. M.
,
2018
, “
Evolving Controllers for a Transformable Wheel Mobile Robot
,”
Complexity
,
2018
, pp.
1
12
.
31.
Luces
,
J. V. S.
,
Matsuzaki
,
S.
, and
Hirata
,
Y.
,
2020
, “
RoVaLL: Design and Development of a Multi-terrain Towed Robot With Variable Lug-Length Wheels
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6017
6024
.
32.
Lin
,
H. S.
,
Lin
,
Y. M.
, and
Lin
,
P. C.
,
2018
, “
SLIP-Model-Based Dynamic Motion Transition Between Different Fixed Points in One Stride in a Leg-Wheel Transformable Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2715
2720
.
33.
Xu
,
Q.
,
Guo
,
W.
,
Sherikar
,
M.
,
Wu
,
C.
, and
Wang
,
L.
,
2018
, “
Environment Perception and Motion Strategy for Transformable Legged Wheel Robot on Rough Terrains
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
2153
2158
.
34.
Bai
,
L.
,
Guan
,
J.
,
Chen
,
X.
,
Hou
,
J.
, and
Duan
,
W.
,
2018
, “
An Optional Passive/Active Transformable Wheel-Legged Mobility Concept for Search and Rescue Robots
,”
Rob. Auton. Syst.
,
107
, pp.
145
155
.
35.
Zheng
,
C.
, and
Lee
,
K.
,
2019
, “
WheeLeR: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9292
9298
.
36.
Kim
,
Y.
,
Lee
,
Y.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2020
, “
STEP: A New Mobile Platform With 2-DOF Transformable Wheels for Service Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1859
1868
.
37.
Mertyüz
,
İ
,
Tanyıldızı
,
A. K.
,
Taşar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Rob. Auton. Syst.
,
133
, p.
103627
.
38.
Pan
,
L. H.
,
Kuo
,
C. N.
,
Huang
,
C. Y.
, and
Chou
,
J. J.
,
2016
, “
The Claw-Wheel Transformable Hybrid Robot with Reliable Stair Climbing and High Maneuverability
,”
2016 IEEE International Conference on Automation Science and Engineering (CASE)
,
Fort Worth, TX
,
Aug. 21–25
, pp.
233
238
.
39.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2013
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
40.
Rohmer
,
E.
,
Reina
,
G.
, and
Yoshida
,
K.
,
2010
, “
Dynamic Simulation-Based Action Planner for a Reconfigurable Hybrid Leg–Wheel Planetary Exploration Rover
,”
Adv. Rob.
,
24
(
8
), pp.
1219
1238
.
41.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Maruyama
,
A.
,
Rohmer
,
E.
,
Nagatani
,
K.
,
Yoshida
,
K.
,
Ming
,
A.
,
Shimojo
,
M.
,
Higashimori
,
M.
, and
Kaneko
,
M.
,
2010
, “
Mechanical Design of the Wheel-Leg Hybrid Mobile Robot to Realize a Large Wheel Diameter
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
3358
3365
.
42.
Wei
,
C.
,
Yao
,
Y.
,
Wu
,
J.
, and
Liu
,
R.
,
2020
, “
Development and Analysis of a Closed-Chain Wheel-Leg Mobile Platform
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
13
.
43.
Chen
,
H. Y.
,
Wang
,
T. H.
,
Ho
,
K. C.
,
Ko
,
C. Y.
,
Lin
,
P. C.
, and
Lin
,
P. C.
,
2021
, “
Development of a Novel Leg-Wheel Module With Fast Transformation and Leaping Capability
,”
Mech. Mach. Theory
,
163
,
104348
.
44.
Okada
,
T.
,
Mahmoud
,
A.
,
Botelho
,
W. T.
, and
Shimizu
,
T.
,
2012
, “
Trajectory Estimation of a Skid-Steering Mobile Robot Propelled by Independently Driven Wheels
,”
Robotica
,
30
(
1
), pp.
123
132
.
45.
Wei
,
Z.
,
Song
,
G.
,
Qiao
,
G.
,
Zhang
,
Y.
, and
Sun
,
H.
,
2017
, “
Design and Implementation of a Leg–Wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
.
46.
Niku
,
S. B.
,
2001
,
Introduction to Robotics: Analysis, Systems, Applications
,
Prentice Hall
,
NJ
, Chap. 2.
You do not currently have access to this content.