Abstract

In order to reinforce the operation stability and obstacle capability of a spherical robot, this paper presents a spherical robot with high-speed rotating flywheel, the mechanical structure of which is mainly composed of a spherical shell, a double pendulum on both sides and two high-speed flywheels. The robot has three excitation modes: level running, self-stability operating, and obstacle surmounting. The dynamic characteristics of the pendulum, flywheel, and brake of the robot are discussed through the establishment of kinematic and dynamic model of the spherical robot and the influence of parameters like weight, flywheel speed. and flywheel position on its dynamic characteristics and robot performance is optimized and analyzed in detail. The research results indicate that the two flywheels located in the center of the sphere apart can bring maximum stability gain to the sphere. Finally, the simulation and experiment of the stability gain brought by the high-speed flywheel to the sphere verify that the operation stability of the sphere is effectively improved after using the flywheel, and the robot that stops the flywheel through a brake fixed on the pendulum has better obstacle surmounting performance.

References

1.
Hogan
,
F. R.
,
Forbes
,
J. R.
, and
Barfoot
,
T. D.
,
2014
, “
Rolling Stability of a Power-Generating Tumbleweed Rover
,”
J. Spacecr. Rocket.
,
51
(
6
), pp.
1895
1906
.
2.
Hernández
,
J. D.
,
Barrientos
,
J.
,
del Cerro
,
J.
,
Barrientos
,
A.
, and
Sanz
,
D.
,
2013
, “
Moisture Measurement in Crops Using Spherical Robots
,”
Ind. Rob.: Int. J.
,
40
(
1
), pp.
59
66
.
3.
Li
,
M.
,
Guo
,
S.
,
Hirata
,
H.
, and
Ishihara
,
H.
,
2015
, “
Design and Performance Evaluation of an Amphibious Spherical Robot
,”
Robot. Auton. Syst.
,
64
(
1
), pp.
21
34
.
4.
Seeman
,
M.
,
Broxvall
,
M.
,
Saffiotti
,
A.
, and
Wide
,
P.
,
2006
, “
An Autonomous Spherical Robot for Security Tasks
,”
IEEE Conference on Computational Intelligence for Homeland Security and Personal Safety
,
Alexandria, VA
,
Oct. 16–17
, pp.
51
55
.
5.
Michaud
,
F.
, and
Caron
,
S.
,
2002
, “
Roball, the Rolling Robot
,”
Auton. Robots
,
12
(
2
), pp.
211
222
.
6.
Michaud
,
F.
,
Laplante
,
J. F.
,
Larouche
,
H.
,
Duquette
,
A.
,
Caron
,
S.
,
Létourneau
,
D.
, and
Masson
,
P.
,
2005
, “
Autonomous Spherical Mobile Robot for Child-Development Studies
,”
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans
,
35
(
4
), pp.
471
480
.
7.
Mizumura
,
Y.
,
Ishibashi
,
K.
,
Yamada
,
S.
,
Takanishi
,
A.
, and
Ishii
,
H.
,
2018
, “
Mechanical Design of a Jumping and Rolling Spherical Robot for Children with Developmental Disorders
,”
2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017
,
Macau, China
,
Dec. 5–8
, pp.
1
6
.
8.
Armour
,
R. H.
, and
Vincent
,
J. F. V.
,
2006
, “
Rolling in Nature and Robotics: A Review
,”
J. Bionic Eng.
,
3
(
4
), pp.
195
208
.
9.
Halme
,
A.
,
Schonberg
,
T.
, and
Wang
,
Y.
,
1996
, “
Motion Control of a Spherical Mobile Robot
,”
Proceedings of the 1996 4th International Workshop on Advanced Motion Control, AMC'96. Part 1 (of 2)
,
Piscataway, NJ
,
Mar. 18–21
, pp.
259
264
.
10.
Chen
,
W. H.
,
Chen
,
C. P.
,
Tsai
,
J. S.
,
Yang
,
J.
, and
Lin
,
P. C.
,
2013
, “
Design and Implementation of a Ball-Driven Omnidirectional Spherical Robot
,”
Mech. Mach. Theory
,
68
, pp.
35
48
.
11.
Zhao
,
B.
,
Li
,
M.
,
Yu
,
H.
,
Hu
,
H.
, and
Sun
,
L.
,
2010
, “
Dynamics and Motion Control of a two Pendulums Driven Spherical Robot
,”
23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
,
Taipei
,
Oct. 18–22
, pp.
147
153
.
12.
Wang
,
L.
, and
Zhao
,
B.
,
2015
, “
Dynamic Modeling and Control Strategy for Turning in Place Motion of a Two-Coaxial Pendulums Driven Spherical Inspector Based on Stick-Slip Principle
,”
Mech. Mach. Theory
,
83
(
1
), pp.
69
80
.
13.
Yoon
,
J. C.
,
Ahn
,
S. S.
, and
Lee
,
Y. J.
,
2011
, “
Spherical Robot With New Type of Two-Pendulum Driving Mechanism
,”
15th International Conference on Intelligent Engineering Systems, INES 2011
,
Poprad
,
June 23–25
, pp.
275
279
.
14.
DeJong
,
B. P.
,
Karadogan
,
E.
,
Yelamarthi
,
K.
, and
Hasbany
,
J.
,
2017
, “
Design and Analysis of a Four-Pendulum Omnidirectional Spherical Robot
,”
J. Intell. Rob. Syst.
,
86
(
1
), pp.
3
15
.
15.
Chen
,
W. H.
,
Chen
,
C. P.
,
Yu
,
W. S.
,
Lin
,
C. H.
, and
Lin
,
P. C.
,
2012
, “
Design and Implementation of an Omnidirectional Spherical Robot Omnicron
,”
2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2012
,
Kaohsiung, Taiwan
,
July 11–14
, pp.
719
724
.
16.
Otani
,
T.
,
Urakubo
,
T.
,
Maekawa
,
S.
,
Tamaki
,
H.
, and
Tada
,
Y.
,
2006
, “
Position and Attitude Control of a Spherical Rolling Robot Equipped with a Gyro
,”
9th IEEE International Workshop on Advanced Motion Control, 2006
,
Istanbul, Turkey
,
Mar. 27–29
, pp.
416
421
.
17.
Ishikawa
,
M.
,
Kitayoshi
,
R.
, and
Sugie
,
T.
,
2011
, “
Volvot: A Spherical Mobile Robot With Eccentric Twin Rotors
,”
2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011
,
Phuket, Thailand
,
Dec. 7–11
, pp.
1462
1467
.
18.
Joshi
,
V. A.
,
Banavar
,
R. N.
, and
Hippalgaonkar
,
R.
,
2010
, “
Design and Analysis of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
45
(
2
), pp.
130
136
.
19.
Morinaga
,
A.
,
Svinin
,
M.
, and
Yamamoto
,
M.
,
2014
, “
A Motion Planning Strategy for a Spherical Rolling Robot Driven by two Internal Rotors
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
993
1002
.
20.
Shu
,
G.
,
Zhan
,
Q.
, and
Cai
,
Y.
,
2009
, “
Motion Control of Spherical Robot Based on Conservation of Angular Momentum
,”
2009 IEEE International Conference on Mechatronics and Automation, ICMA 2009
,
Changchun, China
,
Aug. 9–12
, pp.
599
604
.
21.
Bhattacharya
,
S.
, and
Agrawal
,
S. K.
,
2000
, “
Spherical Rolling Robot: A Design and Motion Planning Studies
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
835
839
.
22.
Svinin
,
M.
,
Morinaga
,
A.
, and
Yamamoto
,
M.
,
2012
, “
An Analysis of the Motion Planning Problem for a Spherical Rolling Robot Driven by Internal Rotors
,”
25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
,
Vilamoura, Algarve
,
Oct. 7–12
, pp.
414
419
.
23.
Das
,
T.
, and
Mukherjee
,
R.
,
2001
, “
“Dynamic Analysis of Rectilinear Motion of a Self-Propelling Disk With Unbalance Masses
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
58
66
.
24.
Mukherjee
,
R.
,
Minor
,
M. A.
, and
Pukrushpan
,
J. T.
,
1999
, “
Simple Motion Planning Strategies for Spherobot: A Spherical Mobile Robot
,”
The 38th IEEE Conference on Decision and Control (CDC)
,
Phoenix, AZ
,
Dec. 7–10
, pp.
2132
2137
.
25.
Tomik
,
F.
,
Nudehi
,
S.
,
Flynn
,
L. L.
, and
Mukherjee
,
R.
,
2012
, “
Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot
,”
J. Intell. Rob. Syst.
,
67
(
2
), pp.
117
131
.
26.
Karadogan
,
E.
, and
De Jong
,
B. P.
,
2017
, “
Design of a Spherical Robot with Cable-Actuated Driving Mechanism
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
6
.
27.
Phipps
,
C. C.
, and
Minor
,
M. A.
,
2006
, “
Introducing the hex-a-Ball, a Hybrid Locomotion Terrain Adaptive Walking and Rolling Robot
,”
8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2005
,
London, UK
,
Sept. 13–15
, pp.
525
532
.
28.
Floyd
,
M.
, and
Minor
,
M. A.
,
2010
, “
Impulse Based Dynamic Rolling in the Rolling Disk Biped
,”
2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010
,
Tokyo, Japan
,
Sept. 26–29
, pp.
498
503
.
29.
Phipps
,
C. C.
, and
Minor
,
M. A.
,
2008
, “
Quasi-static Rolling Control of the Rolling Disk Biped Robot
,”
2008 IEEE International Conference on Robotics and Automation, ICRA 2008
,
Pasadena, CA
,
May 19–23
, pp.
1239
1245
.
30.
Phipps
,
C. C.
,
Shores
,
B. E.
, and
Minor
,
M. A.
,
2008
, “
Design and Quasi-Static Locomotion Analysis of the Rolling Disk Biped Hybrid Robot
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1302
1314
.
31.
Shores
,
B. E.
, and
Minor
,
M. A.
,
2005
, “
Design, Kinematic Analysis, and Quasi-Steady Control of a Morphic Rolling Disk Biped Climbing Robot
,”
2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2721
2726
.
32.
Sugiyama
,
Y.
,
Shiotsu
,
A.
,
Yamanaka
,
M.
, and
Hirai
,
S.
,
2005
, “
Circular/Spherical Robots for Crawling and Jumping
,”
2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
3595
3600
.
33.
Chowdhury
,
A. R.
,
Vibhute
,
A.
,
Soh
,
G. S.
,
Foong
,
S. H.
, and
Wood
,
K. L.
,
2017
, “
Implementing Caterpillar Inspired Roll Control of a Spherical Robot
,”
2017 IEEE International Conference on Robotics and Automation, ICRA 2017
,
Singapore
,
May 29–June 3
, pp.
4167
4174
.
34.
Chen
,
L. H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Agogino
,
A. M.
,
Agogino
,
A.
,
Jung
,
E.
, and
Sunspiral
,
V.
,
2016
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
9
.
35.
Kim
,
K.
,
Chen
,
L. H.
,
Cera
,
B.
,
Daly
,
M.
,
Zhu
,
E.
,
Despois
,
J.
,
Agogino
,
A. K.
,
Sunspiral
,
V.
, and
Agogino
,
A. M.
,
2016
, “
Hopping and Rolling Locomotion With Spherical Tensegrity Robots
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4369
4376
.
36.
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Manovi
,
P.
,
Firoozi
,
R. F.
,
Dobi
,
S.
,
Agogino
,
A. M.
, and
SunSpiral
,
V.
,
2015
, “
System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot
,”
2015 IEEE International Conference on Robotics and Automation, ICRA 2015
,
Seattle, WA
,
May 26–30
, pp.
2867
2873
.
37.
Vespignani
,
M.
,
Friesen
,
J. M.
,
Sunspiral
,
V.
, and
Bruce
,
J.
,
2018
, “
Design of SUPERball v2, a Compliant Tensegrity Robot for Absorbing Large Impacts
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
,
Madrid, Spain
,
Oct. 1–5
, pp.
2865
2871
.
38.
Sugiyama
,
Y.
, and
Hirai
,
S.
,
2006
, “
Crawling and Jumping by a Deformable Robot
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
603
620
.
39.
Jiang
,
G. L.
,
Guu
,
Y. H.
,
Lu
,
C. N.
,
Li
,
P. K.
,
Shen
,
H. M.
,
Lee
,
L. S.
,
Yeh
,
J. A.
, and
Hou
,
M. T. K.
,
2010
, “
Development of Rolling Magnetic Microrobots
,”
J. Micromech. Microeng.
,
20
(
4
), p.
085042
.
40.
Inal
,
A. N.
,
Morgul
,
O.
, and
Saranli
,
U.
,
2012
, “
A 3D Dynamic Model of a Spherical Wheeled Self-Balancing Robot
,”
25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
,
Vilamoura, Algarve
,
Oct. 7–12
, pp.
5381
5386
.
41.
Dudley
,
C. J.
,
Woods
,
A. C.
, and
Leang
,
K. K.
,
2015
, “
A Micro Spherical Rolling and Flying Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5863
5869
.
42.
Mahboubi
,
S.
,
Seyyed Fakhrabadi
,
M. M.
, and
Ghanbari
,
A.
,
2013
, “
Design and Implementation of a Novel Spherical Mobile Robot
,”
J. Intell. Rob. Syst.
,
71
(
1
), pp.
43
64
.
43.
Li
,
B.
,
Deng
,
Q.
, and
Liu
,
Z.
,
2009
, “
A Spherical Hopping Robot for Exploration in Complex Environments
,”
2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009
,
Guilin, China
,
Dec. 19–23
, pp.
402
407
.
44.
Kovac
,
M.
,
Schlegel
,
M.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2009
, “
A Miniature Jumping Robot with Self-Recovery Capabilities
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
,
St. Louis, MO
,
Oct. 11–15
, pp.
583
588
.
45.
Kilin
,
A. A.
,
Pivovarova
,
E. N.
, and
Ivanova
,
T. B.
,
2015
, “
Spherical Robot of Combined Type: Dynamics and Control
,”
Regul. Chaotic Dyn.
,
20
(
6
), pp.
716
728
.
46.
Dwaracherla
,
V.
,
Thakar
,
S.
,
Vachhani
,
L.
,
Gupta
,
A.
,
Yadav
,
A.
, and
Modi
,
S.
,
2019
, “
Motion Planning for Point-to-Point Navigation of Spherical Robot Using Position Feedback
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2416
2426
.
47.
Mahboubi
,
S.
,
Seyyed Fakhrabadi
,
M. M.
, and
Ghanbari
,
A.
,
2013
, “
Design and Implementation of a Novel Spherical Mobile Robot
,”
J. Intell. Rob. Syst.
,
71
(
1
), pp.
43
64
.
48.
Gajbhiye
,
S.
, and
Banavar
,
R. N.
,
2016
, “
Geometric Tracking Control for a Nonholonomic System: A Spherical Robot
,”
IFAC-PapersOnLine.
,
49
(
18
), pp.
820
825
.
49.
Chowdhury
,
A. R.
,
Soh
,
G. S.
,
Foong
,
S. H.
, and
Wood
,
K. L.
,
2017
, “
Experiments in Second Order Sliding Mode Control of a CPG Based Spherical Robot
,”
IFAC PapersOnLine.
,
50
(
1
), pp.
2365
2372
.
50.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
, and
Saeys
,
W.
,
2012
, “
Velocity Control of a Spherical Rolling Robot Using a Grey-PID Type Fuzzy Controller with an Adaptive Step Size
,”
10th IFAC Symposium on Robot Control International Federation of Automatic Control
,
Dubrovnik, Croatia
,
Sept. 5–7
, pp.
5
7
.
51.
Brown
,
H. B.
, and
Xu
,
Y. S.
,
1996
, “
A Single-Wheel, Gyroscopically Stablized Robot
,”
IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
May 20–24
, pp.
3658
3663
.
52.
Xu
,
Y. S.
,
Au
,
K. W.
,
Nandy
,
G. C.
, and
Brown
,
H. B.
,
1998
, “
Analysis of Actuation and Dynamic Balancing for a Single-Wheel Robot
,”
Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Victoria, BC, Canada
,
Oct. 13–17
, pp.
1789
1794
.
53.
Feng
,
S. W.
,
2018
, “
Driverless Self Balancing Vehicle
,”
Internet of Things Technology
,
4
(
1
), pp.
12
13
.
54.
Keo
,
L.
,
Pornsarayouth
,
S.
, and
Yamakita
,
M.
,
2010
, “
Stabilization of an Unmanned Bicycle With Flywheel Balancer
,”
8th IFAC Symposium on Nonlinear Control Systems
,
University of Bologna, Italy
,
Sept. 1–3
, pp.
475
479
.
You do not currently have access to this content.