Knowing the set of allowable motions of a convex body moving inside a slightly larger one is useful in applications such as automated assembly mechanisms, robot motion planning, etc. The theory behind this is called the “kinematics of containment (KC).” In this article, we show that when the convex bodies are ellipsoids, lower bounds of the KC volume can be constructed using simple convex constraint equations. In particular, we study a subset of the allowable motions for an n-dimensional ellipsoid being fully contained in another. The problem is addressed in both algebraic and geometric ways, and two lower bounds of the allowable motions are proposed. Containment checking processes for a specific configuration of the moving ellipsoid and the calculations of the volume of the proposed lower bounds in the configuration space (C-space) are introduced. Examples for the proposed lower bounds in the 2D and 3D Euclidean space are implemented, and the corresponding volumes in C-space are compared with different shapes of the ellipsoids. Practical applications using the proposed theories in motion planning problems and parts-handling mechanisms are then discussed.

References

1.
Latombe
,
J.-C.
,
2012
,
Robot Motion Planning
,
124
,
Springer Science & Business Media
,
Berlin
.
2.
Karnik
,
M.
,
Gupta
,
S. K.
, and
Magrab
,
E. B.
,
2005
, “
Geometric Algorithms for Containment Analysis of Rotational Parts
,”
Comput. Aided Des.
,
37
(
2
), pp.
213
230
.
3.
Halperin
,
D.
,
Latombe
,
J.-C.
, and
Wilson
,
R. H.
,
2000
, “
A General Framework for Assembly Planning: The Motion Space Approach
,”
Algorithmica
,
26
(
3–4
), pp.
577
601
.
4.
Pac
,
M. R.
, and
Popa
,
D. O.
,
2013
, “
Interval Analysis of Kinematic Errors in Serial Manipulators Using Product of Exponentials Formula
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
525
535
.
5.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
6.
LaValle
,
S. M.
,
1998
, “
Rapidly-Exploring Random Trees: A New Tool for Path Planning
,” Computer Science Department, Iowa State University, Technical Report No: 98-11.
7.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
IEEE International Conference on Robotics and Automation
, Vol.
2
,
San Francisco, CA
,
Apr. 24–28
, pp.
995
1001
.
8.
Choi
,
Y.-K.
,
Chang
,
J.-W.
,
Wang
,
W.
,
Kim
,
M.-S.
, and
Elber
,
G.
,
2009
, “
Continuous Collision Detection for Ellipsoids
,”
IEEE Trans. Vis. Comput. Graph.
,
15
(
2
), pp.
311
325
.
9.
Jia
,
X.
,
Choi
,
Y.-K.
,
Mourrain
,
B.
, and
Wang
,
W.
,
2011
, “
An Algebraic Approach to Continuous Collision Detection for Ellipsoids
,”
Comput. Aided Geom. Design
,
28
(
3
), pp.
164
176
.
10.
Iwata
,
S.
,
Nakatsukasa
,
Y.
, and
Takeda
,
A.
,
2015
, “
Computing the Signed Distance Between Overlapping Ellipsoids
,”
SIAM J. Optim.
,
25
(
4
), pp.
2359
2384
.
11.
Chirikjian
,
G. S.
, and
Yan
,
Y.
,
2014
, “The Kinematics of Containment,”
Advances in Robot Kinematics.
Springer
,
New York
, pp.
355
364
.
12.
Ma
,
Q.
, and
Chirikjian
,
G. S.
, “
A Closed-Form Lower Bound on the Allowable Motion for an Ellipsoidal Body and Environment
,”
ASME 2015 IDETC/CIE
,
Boston, MA
,
Aug. 2–5, 2015
.
13.
Blaschke
,
W.
,
1955
,
Vorlesungen über Integralgeometrie, Deutsch
,
Verlag Wiss
.,
Berlin
.
14.
Sors
,
L. A. S.
, and
Santaló
,
L. A.
,
2004
,
Integral Geometry and Geometric Probability
,
Cambridge University Press
,
Cambridge, UK
.
15.
Aubin
,
J.-P.
, and
Frankowska
,
H.
,
2009
,
Set-Valued Analysis
,
Springer Science & Business Media
,
Berlin
.
16.
Chirikjian
,
G. S.
,
Mahony
,
R.
,
Ruan
,
S.
, and
Trumpf
,
J.
,
2018
, “
Pose Changes From a Different Point of View
,”
ASME. J. Mech. Rob.
,
10
(
2
), p.
021008
.
17.
Lozano-Perez
,
T.
,
1983
, “
Spatial Planning: A Configuration Space Approach
,”
IEEE Trans. Comput.
,
C-32
(
2
), pp.
108
120
.
18.
Yan
,
Y.
, and
Chirikjian
,
G. S.
,
2015
, “
Closed-form Characterization of the Minkowski Sum and Difference of Two Ellipsoids
,”
Geom. Dedicata
,
177
(
1
), pp.
103
128
.
19.
Kurzhanskiy
,
A. A.
, and
Varaiya
,
P.
, “
Ellipsoidal Toolbox (ET)
,”
45th IEEE Conference on Decision and Control
,
San Diego, CA
,
Dec. 13–15, 2006
.
20.
Bertsekas
,
D. P.
,
2009
,
Convex Optimization Theory
,
Athena Scientific
,
Belmont, MA
.
21.
De Berg
,
M.
,
Van Kreveld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O. C.
,
2000
, “Computational Geometry,”
Computational Geometry
,
Springer
,
New York
, pp.
1
17
.
22.
Stein
,
P.
,
1966
, “
A Note on the Volume of a Simplex
,”
Am. Math. Monthly
,
73
(
3
), pp.
299
301
.
23.
Chirikjian
,
G. S.
,
2011
,
Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications
, Vol.
2
,
Springer Science & Business Media
,
Berlin
.
24.
Ruan
,
S.
,
Ma
,
Q.
,
Poblete
,
K. L.
,
Yan
,
Y.
, and
Chirikjian
,
G. S.
, “
Path Planning for Ellipsoidal Robots and General Obstacles Via Closed-Form Characterization of Minkowski Operations
,”
Workshop on Algorithmic Foundations of Robotics
,
Mérida, México
,
Dec. 9–11, 2018
.
25.
Corke
,
P.
,
2017
,
Robotics, Vision and Control: Fundamental Algorithms in MATLAB® Second, Completely Revised
, Vol.
118
,
Springer
,
New York
.
26.
Sanderson
,
A.
, “
Parts Entropy Methods for Robotic Assembly System Design
,”
Proceedings. 1984 IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
March 13–15, 1984
, Vol.
1
, pp.
600
608
.
27.
Chirikjian
,
G. S.
, “
Parts Entropy and the Principal Kinematic Formula
,”
Proceedings of the IEEE Conference on Automation Science and Engineering
,
Washington, DC
,
Aug. 23–26, 2008
, pp.
864
869
.
You do not currently have access to this content.