In this paper, the modeling, design, and characterization of the passive discrete variable stiffness joint (pDVSJ-II) are presented. The pDVSJ-II is an extended proof of concept of a passive revolute joint with discretely controlled variable stiffness. The key motivation behind this design is the need for instantaneous switching between stiffness levels when applied for remote exploration applications where stiffness mapping is required, in addition for the need of low-energy consumption. The novelty of this work lies in the topology used to alter the stiffness of the variable stiffness joint. Altering the stiffness is achieved by selecting the effective length of an elastic cord with hook's springs. This is realized through the novel design of the cord grounding unit (CGU), which is responsible for creating a new grounding point, thus changing the effective length and the involved springs. The main features of CGU are the fast response and the low-energy consumption. Two different levels of stiffness (low, high) can be discretely selected besides the zero stiffness. The proposed physical-based model matched the experimental results of the pDVSJ-II in terms of discrete stiffness variation curves, and the stiffness dependency on the behavior of the springs. Two psychophysiological tests were conducted to validate the capabilities to simulate different levels of stiffness on human user and the results showed high relative accuracy. Furthermore, a qualitative experiment in a teleoperation scenario is presented as a case study to demonstrate the effectiveness of the proposed haptic interface.

References

1.
Hayward
,
V.
,
Astley
,
O.
,
Cruz-Hernandez
,
M.
,
Grant
,
D.
, and
Robles-De-La-Torre
,
G.
,
2004
, “
Haptic Interfaces and Devices
,”
Sensor Rev.
,
24
(
1
), pp.
16
29
.
2.
Lee
,
S.
,
Sukhatme
,
G. S.
,
Kim
,
G. J.
, and
Park
,
C. M.
,
2002
, “
Haptic Control of a Mobile Robot: A User Study
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Lausanne, Switzerland, Sept. 30–Oct. 4, pp.
2867
2874
.
3.
Cho
,
S. K.
,
Jin
,
H. Z.
,
Lee
,
J. M.
, and
Yao
,
B.
,
2010
, “
Teleoperation of a Mobile Robot Using a Force-Reflection Joystick With Sensing Mechanism of Rotating Magnetic Field
,”
IEEE/ASME Trans. Mechatronics
,
15
(
1
), pp.
17
26
.
4.
Crespo
,
M.
, and
Reinkensmeyer
,
D. J.
,
2008
, “
Haptic Guidance Can Enhance Motor Learning of a Steering Task
,”
J. Motor Behav.
,
40
(
6
), pp.
545
556
.
5.
Chen
,
X.
, and
Agrawal
,
S. K.
,
2013
, “
Assisting Versus Repelling Force-Feedback for Learning of a Line Following Task in a Wheelchair
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
6
), pp.
959
968
.
6.
Coles
,
T. R.
,
Meglan
,
D.
, and
John
,
N. W.
,
2011
, “
The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art
,”
IEEE Trans. Haptics
,
4
(
1
), pp.
51
66
.
7.
Ferre
,
M.
,
Galiana
,
I.
,
Wirz
,
R.
, and
Tuttle
,
N.
,
2011
, “
Haptic Device for Capturing and Simulating Hand Manipulation Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
808
815
.
8.
Gosselin
,
F.
,
Bidard
,
C.
, and
Brisset
,
J.
,
2005
, “
Design of a High Fidelity Haptic Device for Telesurgery
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
205
210
.
9.
Wang
,
X.
, and
Liu
,
P. X.
,
2006
, “
Improvement of Haptic Feedback Fidelity for Telesurgical Applications
,”
Electron. Lett.
,
42
(
6
), pp.
327
329
.
10.
Ni
,
Z.
,
Bolopion
,
A.
,
Agnus
,
J.
,
Benosman
,
R.
, and
Regnier
,
S.
,
2012
, “
Asynchronous Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1081
1089
.
11.
Bolopion
,
A.
, and
Régnier
,
S.
,
2013
, “
A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
496
502
.
12.
Salisbury
,
J. K.
, and
Srinivasan
,
M.
,
1996
, “
The Proceedings of the First Phantom Users Group Workshop
,” Massachusetts Institute of Technology, Cambridge, MA, Report No.
AITR-1596
.https://dspace.mit.edu/handle/1721.1/6769
13.
Gupta
,
A.
, and
O'Malley
,
M. K.
,
2006
, “
Design of a Haptic Arm Exoskeleton for Training and Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
11
(
3
), pp.
280
289
.
14.
Turner
,
M.
,
Gomez
,
D.
,
Tremblay
,
M.
, and
Cutkosky
,
M. R.
,
1998
, “
Preliminary Tests of an Arm-Grounded Haptic Feedback Device in Telemanipulation
,”
Symposium, Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Anaheim, CA, pp.
145
150
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.1781&rep=rep1&type=pdf
15.
MA
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
RML Glove—An Exoskeleton Glove Mechanism With Haptics Feedback
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
641
652
.
16.
Swanson
,
D.
,
2003
, “
Implementation of Arbitrary Path Constraints Using Dissipative Passive Haptic Displays
,”
Ph.D. thesis
, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.https://pdfs.semanticscholar.org/2e1e/76e5cb2c5d339c43e3dc7a18ec59bd014463.pdf
17.
Rossa
,
C.
,
Lozada
,
J.
, and
Micaelli
,
A.
,
2014
, “
Design and Control of a Dual Unidirectional Brake Hybrid Actuation System for Haptic Devices
,”
IEEE Trans. Haptics
,
7
(
4
), pp.
442
453
.
18.
Nam
,
Y. J.
, and
Park
,
M. K.
,
2007
, “
A Hybrid Haptic Device for Wide-Ranged Force Reflection and Improved Transparency
,”
International Conference on Control, Automation and Systems
, Seoul, South Korea, Oct. 17–20, pp.
1015
1020
.
19.
Book
,
W.
,
Charles
,
R.
,
Davis
,
H. T.
, and
Gomes
,
M.
,
1996
, “
The Concept and Implementation of a Passive Trajectory Enhancing Robot
,”
ASME
Dynamic Systems and Control Division, Atlanta, GA, pp. 633–638.http://hdl.handle.net/1853/39068
20.
Sakaguchi
,
M.
, and
Furusho
,
J.
,
1999
, “
Development of 2 DOF Force Display System Using ER Actuators
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Atlanta, GA, Sept. 19–23, pp.
707
712
.
21.
Tenzer
,
Y.
,
Davies
,
B. L.
, and
Rodriguez y Baena
,
F.
,
2010
, “
Programmable Differential Brake for Passive Haptics
,”
Rob. Auton. Syst.
,
58
(
3
), pp.
249
255
.
22.
Gosline
,
A. H. C.
, and
Hayward
,
V.
,
2008
, “
Eddy Current Brakes for Haptic Interfaces: Design, Identification, and Control
,”
IEEE/ASME Trans. Mechatronics
,
13
(
6
), pp.
669
677
.
23.
Achibet
,
M.
,
Girard
,
A.
,
Talvas
,
A.
,
Marchal
,
M.
, and
Lécuyer
,
A.
,
2015
, “
Elastic-Arm: Human-Scale Passive Haptic Feedback for Augmenting Interaction and Perception in Virtual Environments
,”
IEEE Virtual Reality
(
VR
), Arles, France, Mar. 23–27, pp.
63
68
.
24.
Bianchi
,
M.
,
Scilingo
,
E. P.
,
Serio
,
A.
, and
Bicchi
,
A.
,
2009
, “
A New Softness Display Based on bi-Elastic Fabric
,”
World Haptics 2009
-
Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Salt Lake City, UT, Mar. 18–20, pp.
382
383
.
25.
Song
,
A.
,
Morris
,
D.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2005
, “
Real Time Stiffness Display Interface Device for Perception of Virtual Soft Object
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Edmonton, AB, Aug. 2–6, pp.
139
143
.
26.
Basafa
,
E.
,
Sheikholeslami
,
M.
,
Mirbagheri
,
A.
,
Farahmand
,
F.
, and
Vossoughi
,
G. R.
,
2009
, “
Design and Implementation of Series Elastic Actuators for a Haptic Laparoscopic Device
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 2–6, pp.
6054
6057
.
27.
Gan
,
D.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
,
Caldwell
,
D. G.
, and
Seneviratne
,
L.
,
2012
, “
Stiffness Design for a Spatial Three Degrees of Freedom Serial Compliant Manipulator Based on Impact Configuration Decomposition
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011002
.
28.
Awad
,
M. I.
,
Gan
,
D.
,
Cempini
,
M.
,
Cortese
,
M.
,
Vitiello
,
N.
,
Dias
,
J.
,
Dario
,
P.
, and
Seneviratne
,
L.
,
2016
, “
Modeling, Design & Characterization of a Novel Passive Variable Stiffness Joint (pVSJ)
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
323
329
.
29.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
526
531
.
30.
Diller
,
S.
,
Majidi
,
C.
, and
Collins
,
S. H.
,
2016
, “
A Lightweight, Low-Power Electroadhesive Clutch and Spring for Exoskeleton Actuation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
682
689
.
31.
Hurst
,
J. W.
,
Chestnutt
,
J. E.
, and
Rizzi
,
A. A.
,
2010
, “
The Actuator With Mechanically Adjustable Series Compliance
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
597
606
.
32.
Zhou
,
X.
,
Jun
,
S.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011005
.
33.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Vanderborght
,
B.
, and
Caldwell
,
D. G.
,
2010
, “
A Novel Actuator With Adjustable Stiffness (AWAS)
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
4201
4206
.
34.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
AwAS-II: A New Actuator With Adjustable Stiffness Based on the Novel Principle of Adaptable Pivot Point and Variable Lever Ratio
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4638
4643
.
35.
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
378
383
.
36.
Herzig
,
N.
,
Maiolino
,
P.
,
Iida
,
F.
, and
Nanayakkara
,
T.
,
2018
, “
A Variable Stiffness Robotic Probe for Soft Tissue Palpation
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
1168
1175
.
37.
Awad
,
M. I.
,
Gan
,
D.
,
Az-zu'bi
,
A.
,
Thattamparambil
,
J.
,
Stefanini
,
C.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Novel Passive Discrete Variable Stiffness Joint (pDVSJ): Modeling, Design, and Characterization
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Qingdao, China, Dec. 3–7, pp.
1808
1813
.
38.
Dzidek
,
B. M.
,
Adams
,
M. J.
,
Andrews
,
J. W.
,
Zhang
,
Z.
, and
Johnson
,
S. A.
,
2017
, “
Contact Mechanics of the Human Finger Pad Under Compressive Loads
,”
J. R. Soc. Interface
,
14
(
127
), pp.
1
13
.
39.
Treloar
,
L.
, and
Ronald
,
G.
,
2005
,
The Physics of Rubber Elasticity
,
Oxford University Press
, Oxford, UK.
40.
Love
,
A. E.
,
1920
,
A Treatise on the Mathematical Theory of Elasticity
, Dover Publications, Mineola, NY.
41.
Bianchi
,
M.
,
Battaglia
,
E.
,
Poggiani
,
M.
,
Ciotti
,
S.
, and
Bicchi
,
A.
,
2016
, “
A Wearable Fabric-Based Display for Haptic Multi-Cue Delivery
,”
IEEE Haptics Symposium
(
HAPTICS
), Philadelphia, PA, Apr. 8–11, pp.
277
283
.
42.
Koçak
,
U.
,
Palmerius
,
K. L.
,
Forsell
,
C.
,
Ynnerman
,
A.
, and
Cooper
,
M.
,
2011
, “
Analysis of the JND of Stiffness in Three Modes of Comparison
,”
International Workshop on Haptic and Audio Interaction Design
, Kusatsu, Japan, Aug. 25–26, pp.
22
31
.
43.
Amiguet
,
J.
,
Sessa
,
S.
,
Bleuler
,
H.
, and
Takanishi
,
A.
,
2015
, “
Design of a Wearable Device for Low Frequency Haptic Stimulation
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Zhuhai, China, Dec. 6–9, pp.
297
302
.
44.
Konstantinova
,
J.
,
Cotugno
,
G.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2018
, “
Correction: Palpation Force Modulation Strategies to Identify Hard Regions in Soft Tissue Organs
,”
PloS One
,
13
(
1
), pp.
1
24
.
45.
Goodrich
,
M. A.
, and
Schultz
,
A. C.
,
2008
, “
Human–Robot Interaction: A Survey
,”
Found. Trends® Human–Comput. Interact.
,
1
(
3
), pp.
203
275
.
46.
Quigley
,
M.
,
Conley
,
K.
,
Gerkey
,
B. P.
,
Faust
,
J.
,
Foote
,
T.
,
Leibs
,
J.
,
Wheeler
,
R.
, and
Ng
,
A. Y.
,
2009
, “
ROS: An Open-Source Robot Operating System
,”
ICRA Workshop Open Source Software
, pp.
1
5
.
47.
Mathijssen
,
G.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Variable Recruitment of Parallel Elastic Elements: Series–Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
594
602
.
48.
Mathijssen
,
G.
,
Furnemont
,
R.
,
Beckers
,
S.
,
Verstranten
,
T.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Cylindrical Cam Mechanism for Unlimited Subsequent Spring Recruitment in Series-Parallel Elastic Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 25–30, pp.
857
862
.
49.
Islam
,
S.
,
Gan
,
D.
,
Ashour
,
R.
,
Dario
,
P.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2017
, “
Haptics and Virtual Reality Based Bilateral Telemanipulation of Miniature Aerial Vehicle Over Open Communication Network
,”
18th International Conference on Advanced Robotics
(
ICAR
), Hong Kong, July 10–12, pp.
334
339
.
50.
Wannasuphoprasit
,
W.
,
Gillespie
,
R. B.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
1997
, “
Cobot Control
,”
International Conference on Robotics and Automation
(
ICRA)
, Albuquerque, NM, Apr. 20–25, pp.
3571
3576
.
51.
Karadogan
,
E.
,
Williams
,
R. L.
, II
,
Howell
,
J. N.
, and
Conaster
,
R. R.
, Jr.
,
2010
, “
A Stiffness Discrimination Experiment Including Analysis of Palpation Forces and Velocities
,”
Simul. Healthcare
,
5
(
5
), pp.
279
288
.
You do not currently have access to this content.