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This paper addresses the passive realization of any selected planar elastic behavior with
a parallel or a serial manipulator. Sets of necessary and sufficient conditions for a mech-
anism to passively realize an elastic behavior are presented. These conditions completely
decouple the requirements on component elastic properties from the requirements on
mechanism kinematics. The restrictions on the set of elastic behaviors that can be real-
ized with a mechanism are described in terms of acceptable locations of realizable elastic
behavior centers. Parallel–serial mechanism pairs that realize identical elastic behaviors
(dual elastic mechanisms) are described. New construction-based synthesis procedures
for planar elastic behaviors are developed. Using these procedures, one can select the
geometry of each elastic component from a restricted space of kinematically allowable
candidates. With each selection, the space is further restricted until the desired elastic
behavior is achieved. [DOI: 10.1115/1.4037019]
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1 Introduction

Compliant behavior in manipulation is an important topic in
robotics research and industrial application. General compliant
behavior can be modeled as a body suspended by an elastic paral-
lel or serial mechanism. For small displacements from equilib-
rium, elastic behavior can be described by a symmetric positive
semidefinite (PSD) matrix, the stiffness matrix K, which maps the
applied force to displacement, or its inverse, the compliance
matrix C, which maps the displacement to force.

A desired compliance can be obtained using mechanisms
containing multiple passive elastic components, with each provid-
ing compliant constraint along or about a single axis. In robotic
applications, a desired elastic behavior may be achieved using an
elastic mechanism mounted on the manipulator end effector or the
desired behavior may be designed into the robot manipulator
itself. In the design of the behavior using either approach, the geo-
metric construction of the mechanism/manipulator is an important
consideration.

In some manipulation tasks, a time-varying compliant behavior
is needed. For this purpose, variable stiffness actuators (VSAs) [1]
that allow joint compliance to be changed in real time are used.
Although the use of VSA’s significantly enlarges the space of
realizable compliant behaviors, varying the joint stiffness values
alone, however, may not be adequate to achieve a desired behav-
ior. Identification of the mechanism geometry required to realize a
given compliance (as well as the joint compliances) is the primary
motivation for this work.

This work is also motivated by the desire for a better under-
standing of compliant behavior achieved with a parallel or serial
mechanism. In the planar case, since the elastic components in a
mechanism are easy to illustrate, the physical significance of
realization conditions can be readily understood in terms of the
mechanism geometry.

1.1 Related Work. Screw theory [2] has been widely used in
elastic behavior analysis [3–6], while Lie groups [7] have also
been used.

In previous work in the realization of spatial compliances, the
bounds of elastic behaviors achieved with simple mechanisms
(i.e., parallel and serial mechanisms without helical joints)
were identified [8,9]. Synthesis procedures to achieve a simple-
mechanism realizable stiffness or compliance matrix were devel-
oped [8,9] and later refined [10,11]. The synthesis of an arbitrary
spatial stiffness matrix with a parallel system with both screw and
simple springs was presented in Ref. [12] and the process further
refined in Ref. [13]. Stiffness matrix decompositions for the
purpose of realization with screw and simple springs revealed
inherent elastic behavior properties [14,15].

Each of these approaches to spatial elastic behavior realization
involved a decomposition of the stiffness matrix without regard to
mechanism geometry. More recent work has included some geo-
metric considerations in the realization of spatial elastic behaviors
[16–19].

In recent work [20] on planar elastic mechanism realization, a
procedure to synthesize an arbitrary planar stiffness was devel-
oped for a restricted class of mechanism. As part of the procedure,
the geometric parameters of a symmetric four-spring parallel
mechanism were selected.

Most recently, the realization of a specified point planar elas-
tic behavior (compliance in Euclidian space E(2)) using 3R
serial mechanisms with specified link lengths has been
addressed. In Ref. [21], optimization was used to identify the
combination of mechanism configuration and joint stiffnesses
that achieve an approximation of the desired elastic behavior. In
Refs. [22] and [23], the synthesis of isotropic compliance in
E(2) and E(3) with serial mechanisms has been addressed. In
Ref. [24], conditions on mechanism geometry to achieve all
compliances in E(2) were identified and synthesis procedures for
the realization of an arbitrary 2� 2 compliance were presented.
The results obtained for 3R mechanisms [24] were then extended
to general serial mechanisms having three (revolute and/or pris-
matic) joints [25].

1Corresponding author.
Manuscript received December 14, 2016; final manuscript received May 18,

2017; published online August 4, 2017. Assoc. Editor: Robert J. Wood.

Journal of Mechanisms and Robotics OCTOBER 2017, Vol. 9 / 051006-1Copyright VC 2017 by ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanism
srobotics/article-pdf/9/5/051006/6403545/jm

r_009_05_051006.pdf by guest on 09 April 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4037019&domain=pdf&date_stamp=2017-08-04


1.2 Overview. This paper addresses the passive realization of
an arbitrary planar (3� 3) elastic behavior with either a parallel or
a serial mechanism. Unlike most previous synthesis procedures
that involved mathematically decomposing the stiffness matrix in
one step without regard to mechanism geometry, the synthesis
procedures presented here are completely geometry based (no
matrix decomposition needed). This allows one to select the
geometry of each elastic component from a restricted space of
kinematically allowable candidates. Then, with each selection, the
space is further restricted until the desired elastic behavior is
achieved.

The paper is outlined as follows: Section 2 presents the theoret-
ical background for planar compliance realization with a parallel
or serial mechanism. Necessary and sufficient conditions for an
elastic behavior to be realized with a mechanism are obtained. In
Sec. 3, the physical implications of the realization conditions are
presented. The restrictions on the set of elastic behaviors that can
be realized (described in terms of the locations of realizable
elastic behavior centers) with a mechanism are identified and the
concept of dual elastic mechanisms is introduced. In Sec. 4, geo-
metric construction-based syntheses of a planar compliant behav-
ior using either a parallel or a serial mechanism are presented. In
Sec. 5, a numerical example is provided to illustrate the synthesis
procedures. A brief summary is presented in Sec. 6.

2 Planar Compliance Realization Conditions

In this section, the technical background for compliance real-
ization with a parallel or serial mechanism is presented. Necessary
and sufficient conditions to realize a planar elastic behavior are
derived for both parallel and serial mechanisms.

2.1 Technical Background. It is known that any rank-m
6� 6 PSD matrix K can be decomposed into a sum of m rank-1
PSD matrices, i.e.,

K ¼ k1w1wT
1 þ k2w2wT

2 þ � � � þ kmwmwT
m (1)

where ki > 0 is a constant and wi 2 R6 is a unit wrench defined
as the spring wrench [8]. Each rank-1 PSD stiffness Ki ¼ kiwiw

T
i

can be uniquely realized with a simple spring or a screw spring
[12] having a line of action along wi and spring constant ki. The
decomposition (1) can be written as

K ¼WKJW (2)

where W ¼ ½w1;w2;…;wm� is the wrench matrix and KJ ¼
diagðk1; k2;…; kmÞ is the joint-space stiffness matrix.

If stiffness is decomposed into the form of Eq. (1), the elastic
behavior can be realized with a set of springs connected in parallel
in which each spring provides a single axis of compliant con-
straint. In general, the rank-1 decomposition of K is not unique.
There are infinitely many sets of springs that realize a given elas-
tic behavior.

By duality [26], a decomposition of a compliance matrix C (the
inverse of stiffness matrix K) yields a set of compliant joint twists
associated with a serial mechanism. Using a similar process, a
compliance matrix C can be realized with a serial mechanism in
which each joint twist provides a rank-1 PSD component.

For the planar case, an elastic behavior is characterized by a
3� 3 PSD stiffness matrix K or its inverse, the compliance matrix
C. The spring wrenches in a parallel mechanism and the joint
twists in a serial mechanism are 3-vectors. To realize an arbitrary
elastic behavior, only simple mechanisms (zero or infinite pitch
spring wrenches or joint twists) are needed. For a parallel
mechanism, only line springs and torsional springs are needed.
For a serial mechanism, only revolute and prismatic joints are
needed.

The planar spring wrench for a line spring and for a torsional
spring can be expressed in Pl€ucker ray coordinates as

wl ¼
n

d

� �
; wt ¼

0

1

� �
(3)

where n is a unit 2-vector indicating the direction of the spring
axis and d ¼ ðr� nÞ � k is a scalar indicating the distance of the
spring axis from the coordinate frame used to describe the stiff-
ness K, r is the perpendicular position vector from the coordinate
frame to the spring axis, and k is the unit vector perpendicular to
the plane of the mechanism.

When the value of a wrench wl is given, the perpendicular posi-
tion r to the wrench axis can be calculated using

r ¼ �dXn (4)

where X is the 2� 2 anti-symmetric matrix associated with a cross
product

X ¼ 0 �1

1 0

� �
(5)

For a torsional spring, since the spring wrench is a free vector, its
location is arbitrary.

The planar joint twist for a revolute joint and for a prismatic
joint can be expressed in Pl€ucker axis coordinates as

tr ¼
v

1

� �
; tp ¼

n

0

� �
(6)

where v¼ r� k and r is a 2-vector indicating the location of the
revolute joint relative to the coordinate frame used to describe the
compliance C, and where n is a unit 2-vector indicating the direc-
tion of the prismatic joint axis.

Given the value of a twist tr, a unique point, the instantaneous
center of rotation for the twist motion is calculated using

r ¼ Xv (7)

For a twist associated with a prismatic joint, since tp is a free vec-
tor in twist space, the location of the joint is arbitrary in the mech-
anism chain.

A wrench w and twist t are called reciprocal [2] if w performs
no work along t. If wrench w and twist t are expressed in Pl€ucker
ray and axis coordinates (as in Eqs. (3) and (6)), respectively, then
w and t are reciprocal if and only if

wTt ¼ tTw ¼ 0 (8)

2.2 Realization Conditions. The space of stiffness matrices
that can be realized with a given mechanism by adjusting the
spring constant of each spring in the mechanism is determined by
the mechanism kinematics.

Consider a parallel mechanism having three spring wrenches
ðw1;w2;w3Þ. Below, we prove that a necessary and sufficient con-
dition for a stiffness matrix K to be realized with the mechanism is

wi �Kðwj � wkÞ ¼ 0; fi; j; kg ¼ f1; 2; 3g (9)

To prove the condition is necessary, we suppose that K is real-
ized with the mechanism. Then, by Eq. (2), K can be expressed as

K ¼WKJWT (10)

where W ¼ ½w1;w2;w3� is the wrench matrix and KJ ¼
diagðk1; k2; k3Þ (with ki � 0) is the joint stiffness matrix. For the
3� 3 matrix W, its inverse can be expressed as

W�1 ¼ 1

k
w2 � w3;w3 � w1;w1 � w2½ �T (11)
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where k is the triple product of (w1; w2; w3)

k ¼ ðw1 � w2Þ � w3 (12)

Multiplying Eq. (10) by W�T from the right yields

K½w2 � w3;w3 � w1;w1 � w2� ¼ k½k1w1; k2w2; k3w3�

Thus, for 8fi; j; kg ¼ f1; 2; 3g

Kðwj � wkÞ ¼ kkiwi (13)

Thus, wi �Kðwj � wkÞ ¼ 0, which proves that condition (9) is
necessary.

In the evaluation of the condition sufficiency, consider that con-
dition (9) is satisfied, then, there exist scalars ai such that

K½w2 � w3;w3 � w1;w1 � w2� ¼ ½a1w1; a2w2; a3w3�

Using Eq. (11)

W�1KW�T ¼ diag
a1

k
;
a2

k
;
a3

k

� �
¼ KJ

Since K is PSD, ðai=kÞ � 0. Thus

K ¼WKJWT

which proves that the stiffness K is realized with the mechanism.
The three joint stiffness constants can be calculated using

ki ¼
ai

k

where k is the scalar defined in Eq. (12) and

a1 ¼
wT

1 K w2 � w3ð Þ
wT

1 w1

a2 ¼
wT

2 K w3 � w1ð Þ
wT

2 w2

a3 ¼
wT

3 K w1 � w2ð Þ
wT

3 w3

By duality, condition (9) applies to a serial mechanism having
joint twists ðt1; t2; t3Þ and a compliance matrix C. In Eq. (9), one
can simply replace the stiffness matrix K with the compliance
matrix C and replace the spring wrenches wi with the joint twists
ti to obtain the condition for a serial mechanism. The joint compli-
ances can also be obtained accordingly.

In summary, we have:
PROPOSITION 1. Consider a parallel mechanism having spring

wrenches ðw1;w2;w3Þ and a serial mechanism having joint twists
ðt1; t2; t3Þ. Then, if the elastic constants (ki or ci) are selectable,

(a) A stiffness matrix K can be realized with the parallel mech-
anism if and only if

wi �Kðwj � wkÞ ¼ 0; fi; j; kg ¼ f1; 2; 3g (14)

(b) A compliance matrix C can be realized with the serial
mechanism if and only if

ti � Cðtj � tkÞ ¼ 0; fi; j; kg ¼ f1; 2; 3g (15)

The realization conditions (14) and (15) are mathematical
requirements for a parallel and a serial mechanism, respectively,
to achieve an arbitrary given compliance behavior. In these

conditions, each spring wrench wi or joint twist ti is treated as a
vector in R3 and the cross product is an operation between these
3-vectors. The physical significance of these conditions is pro-
vided in Sec. 2.3.

Below, for any full-rank compliance behavior, an equivalent set
of conditions is derived from Eqs. (14) and (15). These conditions
do not use the cross product operation and have clear physical
significance.

For a full-rank K; ai 6¼ 0. Multiplying Eq. (13) from the left by
C ¼ K�1 yields

ðwj � wkÞ ¼ aiCwi

For any i 6¼ j

aiw
T
j Cwi ¼ wT

j ðwj � wkÞ ¼ 0 (16)

Since ai 6¼ 0, Eq. (16) can be expressed as

wT
i Cwj ¼ 0; 8i 6¼ j

To determine the spring constants ki, consider

K ¼ k1w1wT
1 þ k2w2wT

2 þ k3w3wT
3 (17)

Multiplying K in Eq. (17) from the right by Cwi yields

KCwi ¼ kiwiðwT
i CwiÞ ) wi ¼ kiðwT

i CwiÞwi

Thus

ki ¼
1

wT
i Cwi

The result obtained for stiffness matrix K for a parallel mecha-
nism applies to its dual involving the compliance matrix C for a
serial mechanism. Thus, we have:

PROPOSITION 2. Consider a parallel mechanism having spring
wrenches ðw1;w2;w3Þ and a serial mechanism having joint twists
ðt1; t2; t3Þ. Then, if the elastic constants (ki or ci) are selectable

(a) A full-rank elastic behavior K (C) can be realized with a
parallel mechanism if and only if

wT
i Cwj ¼ 0; 8i 6¼ j (18)

The spring constant associated with wi is determined using

ki ¼
1

wT
i Cwi

; i ¼ 1; 2; 3 (19)

(b) A full-rank elastic behavior C (K) can be realized with a
serial mechanism if and only if

tT
i Ktj ¼ 0; 8i 6¼ j (20)

The joint compliance associated with ti is determined using

ci ¼
1

tT
i Kti

; i ¼ 1; 2; 3 (21)

Note that the conditions in Eq. (14) or Eq. (18) for parallel mech-
anism and the conditions in Eq. (15) or Eq. (20) for serial mecha-
nisms can be used to determine whether a given elastic behavior
can be realized based on the mechanism kinematics alone. If these
conditions are satisfied, the realization of the specified behavior is
ensured if the non-negative spring coefficients in Eq. (19) or joint
compliances in Eq. (21) can be physically attained.

Also, note that realization condition (14) for a parallel
mechanism applies for all stiffness matrices (including those
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nonfull-rank elastic behaviors) while condition (18) applies only
to full-rank elastic behaviors. Since full-rank elastic behaviors
are of most interest, in the rest of this paper, only full-rank stiff-
ness and compliance matrices are considered and the conditions
presented in Proposition 2 are used.

2.3 Physical Significance of Realization Conditions. Since
the cross product operation is normally not used on screws, the
physical significance of conditions (14) and (15) is not evident.
However, if the three vectors in Eq. (14) associated with the cross
product are interpreted as planar twists (i.e., t ¼ wi � wj), the
physical meaning of the realization conditions can be obtained.

For a parallel mechanism having three spring wrenches w1; w2,
and w3, consider a twist t reciprocal to the two spring wrenches
wi and wj. By Eq. (8), the planar twist can be expressed as

t ¼ cðwi � wjÞ

where c is a scalar and the twist t is located at the intersection of
the two spring wrench axes. Realization condition (14) requires

Kt ¼ awk

where a is a scalar. Thus, if a parallel mechanism realizes the
stiffness, a twist located at the intersection of any two spring axes
(wi and wj) yields a wrench along the axis of the third spring wk.

Similarly, for a serial mechanism having three joint twists
t1; t2, and t3, realization condition (15) implies that a wrench
passing through any two joints (ti and tj) results in a twist motion
about the third joint tk.

The physical significance of conditions (18) and (20) is evident.
For an elastic behavior realized with a parallel mechanism, the
twist resulting from a force along one spring wrench must be
reciprocal to the other two spring wrenches. For an elastic behav-
ior realized with a serial mechanism, the wrench resulting from a
motion along one joint twist must be reciprocal to the other two
joint twists. The realization conditions for parallel and serial
mechanisms provide the relationship between the mechanism
geometry and the elastic behavior to be realized. If the conditions
are not satisfied, then a specified planar elastic behavior cannot be
obtained no matter how the joint stiffnesses vary.

3 Planar Elastic Behaviors and Mechanisms

The implications of the realization conditions can be
understood in the geometry of the mechanism. First, additional
physical interpretations of conditions (18) and (20) are presented.
Next, the bounds on the realizable space of elastic behaviors for a
given mechanism are interpreted in terms of the locus of elastic
behavior centers using these conditions. Then, conditions on the
parallel and serial mechanisms that can achieve the same subspace
of elastic behaviors are identified. The two mechanisms are
defined to be dual elastic mechanisms. The geometric properties
of a pair of dual elastic mechanisms are presented.

3.1 Implications of the Realization Conditions. Consider a
parallel mechanism consisting of three line springs. Spring wrench
behavior is independent of the location along the spring axis and,
if none of the springs is parallel to another, the three spring axes
form a triangle ABC as shown in Fig. 1.

If a force f1 is applied to the elastically constrained body along
spring wrench w1, the force can be expressed as f1 ¼ aw1 where
a is a scalar. The twist motion t1 resulting from f1 is

t1 ¼ Cf1 ¼ aCw1

By condition (18), twist t1 is reciprocal to the other two spring
wrenches w2 and w3. Thus, the instantaneous center associated
with t1 must be located at the intersection of these two spring

axes, point C. The resulting motion is a rotation about vertex C as
illustrated in Fig. 2(a). Therefore, if an applied force is along one
spring axis, the resulting motion is a rotation about the opposite
vertex of the triangle formed by the three spring axes.

Also, it can be proved that if an applied force passes through
a vertex of the triangle, the resulting twist corresponds to an
instantaneous center located on the spring axis opposite to the ver-
tex. To prove this, consider a force f passing through vertex A as
shown in Fig. 2(b). Then, f can be expressed as a linear combina-
tion of w1 and w2

f ¼ aw1 þ bw2

where a and b are arbitrary scalars. Condition (18) requires

wT
3 Cf ¼ wT

3 Cðaw1 þ bw2Þ ¼ 0

which means that the twist resulting from f acting on the body
must be reciprocal to w3. Thus, the twist instantaneous center
must be on spring axis w3.

In summary, for a planar parallel mechanism having three line
springs,

(i) A force along one spring axis results in a twist having an
instantaneous center of rotation located at the opposite ver-
tex of the triangle formed by the three spring axes.

(ii) A force passing through a vertex of the triangle results in a
twist center on the line along the opposite side of the
triangle.

By duality and condition (20), for a planar serial mechanism
having three revolute compliant joints:

(i) A rotation about one joint results in a wrench passing
through the other two joints;

(ii) A rotation about an arbitrary point on the line passing
through two joints results in a wrench passing through the
third joint.

3.2 Center of Planar Elastic Behavior. For any planar elas-
tic behavior, there is a unique point at which the behavior can be

Fig. 1 Planar parallel mechanism with three line springs. The
three spring axes typically form a triangle ABC.

Fig. 2 Force and resulting motion of a three-spring parallel
mechanism: (a) a force along one spring axis results in a rota-
tion about the opposite vertex of the triangle and (b) a force
passing through one vertex results in a twist with an instanta-
neous center located on the line along the opposite side of the
triangle
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described by a diagonal stiffness (compliance) matrix. This point
is defined as the center of stiffness (compliance). For a given
planar elastic behavior, the centers of stiffness and compliance
are coincident. Any force passing through the center results in a
pure translation (i.e., a twist with infinite pitch or with instantane-
ous center at infinity), and any twist at the center results in a pure
couple (i.e., a wrench with zero pitch). It can be seen that, if a
force f results in a pure translation, the line of action of the force
must pass through the center of stiffness.

If, in a given coordinate frame, a 3� 3 stiffness K and compli-
ance C are expressed in a partitioned form as

K ¼ A b

bT k33

� �
; C ¼ E g

gT c33

� �
(22)

where A and E are 2� 2 symmetric matrices, and b and g are
2-vectors, the locations of stiffness center and compliance center
can be determined using [20]

rk ¼ �XA�1b and rc ¼ Xg=c33 (23)

where X 2 R2�2 is the anti-symmetric matrix defined in Eq. (5).
For the same planar elastic behavior (C ¼ K�1), rk ¼ rc.

Conditions (18) and (20) constrain the possible location of the
elastic centers associated with a parallel or serial mechanism.
Below, we show that, for any stiffness behavior realized with a
parallel mechanism of three line springs, the center of the behav-
ior must be inside the triangle formed by the three spring axes.

Consider a force f that passes through vertex A between w1 and
w2 which can be expressed as

fðqÞ ¼ ð1� qÞw1 þ qw2; q 2 ½0; 1� (24)

As q varies from 0! 1, the direction of f varies from w1 to w2,
and as previously shown, since f passes through vertex A, the
instantaneous center T(q) of the resulting twist must vary from
point C to point B along the w3 axis. We show that T(q) cannot
move from C! B along finite line CB as q varies from 0! 1.

Suppose that for all q 2 ½0; 1� the center of the twist is finite.
Then the location of the twist instantaneous center, T(q) (which
moves along w3), is a continuous function of q. Note that T(0)¼C
and T(1)¼B. With the finite path from C! B along the axis of
w3, there is a point q̂ 2 ð0; 1Þ such that fðq̂Þ passes through the
instantaneous center Tðq̂Þ (Fig. 3(a)), which means fðq̂Þ is recip-
rocal to the motion caused by itself. Thus, at q ¼ q̂

fTCf ¼ 0

This conflicts the fact that C is positive definite and f 6¼ 0.
Therefore, the finite path from C! B is not valid. The path of
T(q) as q increases from 0 to 1 must be opposite to that illustrated
in Fig. 3(a), and there must be q 2 ð0; 1Þ such that fðqÞ in Eq. (24)
results in a twist at infinity, which is a pure translation. Thus, the
line of action of fðqÞ must pass through the center of stiffness.

Since the force fðqÞ is a positive combination of w1 and w2, the
line of action of fðqÞ is within the area bounded by spring axes w1

and w2 (the shaded area of Fig. 3(b)). Therefore, the center of
stiffness must be in this area.

Applying the same reasoning to vertices B and C, it is proved
that the location of the stiffness center is within the triangle ABC
formed by the three spring axes (Fig. 4(a)).

By duality, for a serial mechanism having three revolute joints,
no matter how the joint compliances are selected, the center of
compliance must be within the triangle formed by the locations of
the three joints J1J2J3 as shown in Fig. 4(b).

Since the locus of stiffness centers is determined for a given
mechanism with fixed geometry, it is easy to assess whether a
specified elastic behavior can be attained by evaluating the loca-
tion of the behavior center. If the center is not in the region
bounded by the mechanism geometry, then the behavior cannot be
realized with the mechanism regardless of the value of each joint
stiffness/compliance. Also, the location of the center can be used
to: (1) help determine the placement of the elastic components in
the design of a new mechanism or (2) determine the location
within the manipulator workspace that a specified compliance can
be achieved in an existing mechanism.

3.3 Dual Mechanisms in Parallel and Serial Constructions.
Suppose a parallel mechanism has three line spring wrenches
w1; w2, and w3. Consider the following three 3-vectors ðs1; s2; s3Þ
defined by

s1 ¼ w2 � w3; s2 ¼ w3 � w1; s3 ¼ w1 � w2 (25)

If the three 3-vectors si are viewed as planar twists in Pl€ucker
axis coordinates, and ti is the unit twist associated with si, then the
three unit twists ðt1; t2; t3Þ are uniquely determined by the three
wrenches ðw1;w2;w3Þ and each ti is reciprocal to two wrenches
ðwj;wkÞ.

Consider the serial mechanism composed of three joints J1, J2,
and J3 having joint twists t1; t2, and t3, respectively. Since twist
t1 is reciprocal to wrenches w2 and w3, J1 must be at the intersec-
tion of the two wrenches. Similarly, joint J2 must be at the inter-
section of wrenches w1 and w3, and joint J3 must be at the
intersection of wrenches w1 and w2. Therefore, as shown in Fig.
5, the triangle formed by the three line spring axes in the parallel
mechanism is coincident with the triangle formed by the three rev-
olute joints in the serial mechanism. We define such a pair of par-
allel and serial mechanisms as dual elastic mechanisms.

Given a pair of dual elastic mechanisms with spring wrenches
ðw1;w2;w3Þ and joint twists ðt1; t2; t3Þ, it can be proved that for
an elastic behavior described in stiffness matrix K or compliance
matrix C ¼ K�1

Fig. 3 Location of center of elastic behavior: (a) if T(q) moves
from C fi B along the finite segment CB as q varies 0 fi 1, there
must be a q̂ such that f (q̂ ) passes points A and T (q̂ ) and (b) the
center must be in the shaded area

Fig. 4 Location of stiffness center associated with a parallel
and serial mechanism: (a) for a parallel mechanism, the center
must lie within the triangle formed by the three spring axes and
(b) for a serial mechanism, the center must lie within the trian-
gle formed by the three joints
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tT
i Ktj ¼ 0() wT

i Cwj ¼ 0; 8i 6¼ j (26)

Thus, an arbitrary elastic behavior can be realized with one
mechanism if and only if it can be realized with its dual elastic
mechanism. The realizable spaces of elastic behaviors for the two
mechanisms are exactly the same. Also, it can be proved that, if ki

is the spring constant associated with spring wrench wi in the par-
allel mechanism and ci is the joint compliance associated with
joint twist ti, then ki and ci satisfy

kici ¼
1

wT
i ti

� �2
; i ¼ 1; 2; 3 (27)

Note that, since t1 is reciprocal to two wrenches w2 and w3; t1

cannot be reciprocal to wrench w1, unless the three wrenches are
linearly dependent or t1 ¼ 0. Thus, wT

1 t1 6¼ 0. Similarly, wT
i ti 6¼ 0

for i¼ 2, 3.
It can be seen that, for the generic case, a three-spring parallel

mechanism and a three-joint serial mechanism are a pair of dual
elastic mechanisms if and only if the two triangles formed by the
three springs and formed by the three joints are coincident. For
some (nongeneric) cases, the triangle for a parallel or serial
mechanism does not exist. The dual mechanisms have different
geometry. Below, two cases are considered:

(a) Two springs are parallel in a parallel mechanism. Suppose
a parallel mechanism has three springs w1; w2, and w3 with
w1 k w2. The dual elastic serial mechanism has two revo-
lute joints and one prismatic joint. The two revolute joints
are located at the two intersection points of springs w1 and
w3 and w2 and w3. The prismatic joint is perpendicular to
the two parallel spring axes. The geometry of the two
mechanism’s wrench and twist axes is illustrated in
Fig. 6(a).

(b) A parallel mechanism has one torsional spring. Suppose w3

is the torsional spring in a parallel mechanism. The dual
elastic serial mechanism has two prismatic joints J1 and J2

and one revolute joint J3. The directions of the two pris-
matic joints are perpendicular to the two line springs w1

and w2, respectively, and the revolute joint is located at
the intersection of the two line springs w1 and w2. The
geometry of the two mechanism’s wrench and twist axes is
illustrated in Fig. 6(b).

4 Elastic Behavior Synthesis Procedures

In this section, procedures for the realization of planar elastic
behavior using geometric construction-based methods are pre-
sented. First, a synthesis procedure for a parallel mechanism hav-
ing three springs is provided. Next, a synthesis procedure for a
serial mechanism having three joints is presented. These two types
of mechanisms are the most general in that all full-rank planar

stiffness/compliance matrices can be realized with these two
types. Then, synthesis procedures for a parallel mechanism having
a torsional spring and for a serial mechanism having prismatic
joints are discussed.

4.1 Parallel Elastic Mechanism. Suppose a stiffness K
described in a body-based frame is to be realized. The following
synthesis procedure identifies a set of spring axes and their corre-
sponding spring constants that realize the given K. The location
of the stiffness center of the behavior, Ck, can be calculated using
Eq. (23). The geometry associated with the sequence of operations
in the synthesis procedure is illustrated in Fig. 7.

(1) Select the first spring w1: The spring axis can be chosen
arbitrarily relative to the stiffness center Ck.

(2) Calculate the twist t1 resulting from wrench w1

t1 ¼ Cw1

The location of the instantaneous center of rotation associ-
ated with t1, T1, is calculated using Eq. (7).

(3) Select the second spring w2: Due to the reciprocal condi-
tion (18), all candidate wrenches are from the pencil of
lines passing through point T1. Choose a direction for a
wrench passing through T1, then w2 is determined.

(4) Calculate the twist t2 resulting from w2

t2 ¼ Cw2

The location of the instantaneous center associated with t2,
T2, is determined using Eq. (7). Since t2 satisfies the recip-
rocal condition (18), T2 must be on the axis of the first
spring w1.

(5) Identify the third spring w3: The axis of w3 is uniquely
determined by the line passing through points T1 and T2.

With the final step, all three spring wrenches are determined.
The stiffness coefficient for each spring can be calculated using
Eq. (19).

Note that in the generic case, the three wrenches ðw1;w2;w3Þ
generated from the procedure are associated with line springs and
form a triangle. If, in the process of realizing a given elastic
behavior, one or more spring axes are selected to pass through
the center of stiffness, then the three spring axes will not form a
triangle. Consider the following two cases:

(a) If the first spring is selected to pass through the stiffness
center Ck in step 1, the twist t1 ¼ Cw1 is a pure translation.
Due to the reciprocal condition (18), both the second and
third spring axes, w2 and w3, must be perpendicular to the

Fig. 5 Dual elastic mechanisms in parallel and serial construc-
tion. The triangle formed by the three spring axes in the parallel
mechanism is coincident with the triangle formed by the three
joints in the serial mechanism.

Fig. 6 Dual elastic mechanisms in nongeneric cases. (a) A par-
allel mechanism with two parallel springs. The dual elastic
serial mechanism has two revolute joints each located at the
intersection of nonparallel springs and one prismatic joint per-
pendicular to the two parallel springs. (b) A parallel mechanism
with one torsional spring. The dual elastic serial mechanism
has two prismatic joints perpendicular to the two line springs
and one revolute joint located at the intersection point of the
two line springs.
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direction of translation t1. The location of the second spring
axis w2 can be arbitrarily selected. The location of w3 can
be determined by passing through the instantaneous center
of the twist t2 ¼ Cw2 (as shown in Fig. 8(a)). If both the
first and second springs are chosen to pass through the stiff-
ness center, then the third spring must be a torsional spring.

(b) If in step 3, the second spring wrench w2 (passing through
point T1, the instantaneous center of t1 ¼ Cw1) is chosen to
pass through the stiffness center Ck (illustrated in
Fig. 8(b)), then the twist t2 ¼ Cw2 is a pure translation
(twist instantaneous center at infinity). The third spring
wrench w3 must also pass through T1 and be parallel to w1.
Thus, the behavior is realized with three line springs
w1; w2, and w3 as shown in Fig. 8(b).

4.2 Serial Elastic Mechanism. Similar to the parallel
mechanism case, the synthesis procedure identifies the set of joint
locations (configuration of the mechanism) and corresponding
joint compliance constants that realize the given C. The location
of the compliance center, Cc, can be calculated using Eq. (23) and
K ¼ C�1. The geometry associated with the sequence of opera-
tions in the synthesis procedure is illustrated in Fig. 9.

(1) Select the first joint location for t1: The location of the
joint, J1, can be arbitrarily chosen relative to the center Cc.

(2) Calculate the wrench w1 resulting from the twist

w1 ¼ Kt1

The perpendicular position to the line of action of w1 is
determined using Eq. (4).

(3) Select the second joint location for t2: Due to the reciprocal
condition (20), all candidate joints are located on the line of
action of wrench w1. Choose a joint location on the line
along w1, then the joint twist t2 is determined.

(4) Calculate the wrench w2 resulting from t2

w2 ¼ Kt2

Since w2 satisfies the reciprocal condition, the line of action
of w2 passes through the first joint J1.

(5) Identify the third joint twist t3: the joint is uniquely deter-
mined by the intersection of the two lines along wrenches
w1 and w2.

With the final step, all three joint locations are determined. The
joint compliance coefficient for each elastic joint can be calcu-
lated using Eq. (21).

Note that in the generic case, the three twists ðt1; t2; t3Þ gener-
ated from the procedure are joint twists of revolute joints. If in the
process of realizing a given elastic behavior, the location of one
joint is selected to be at the center of compliance, then one or two
prismatic joints must be used. Consider the following two cases.

(a) If the location of the first joint is selected at the compliance
center Cc in step 1 (illustrated in Fig. 10(a)), the wrench

w1 ¼ Kt1 is a pure couple. Due to the reciprocal condition
(20), both the second and third joint twists, t2 and t3, must
be pure translation and the corresponding joints must be
prismatic. The direction of the prismatic joint axis for J2,
n2, can be selected arbitrarily. Given the selection of n2,
the direction of the prismatic joint axis for J3 must be per-
pendicular to the wrench axis determined by

w2 ¼ Ktp2

where tp2 ¼ ½nT
2 ; 0�

T
is the joint twist of J2.

(b) If in step 3, the location of the second joint J2 is selected
such that line J1J2 passes through the center of compliance
Cc (illustrated in Fig. 10(b)), then the wrench w2 ¼ Kt2 is
parallel to w1. The third joint must be prismatic and per-
pendicular to w1. Thus, the compliance is realized with a
serial mechanism having two revolute joints and one pris-
matic joint. Since translation is a free vector, the location
of the prismatic joint on the serial chain is arbitrary.

4.3 Discussion. In the generic case, the synthesis procedure
presented in Sec. 4.1 yields three line springs in a parallel mecha-
nism, and the synthesis procedure presented in Sec. 4.2 yields
three revolute joints in a serial mechanism. In the case that a tor-
sional spring is desired in a parallel mechanism or a prismatic
joint is desired in a serial mechanism, the synthesis procedures
can be modified.

A three-spring parallel mechanism can have, at most, one tor-
sional spring to realize a full-rank stiffness matrix. Since the
spring wrench associated with a torsional spring has the form of
wt in Eq. (3), it must be selected as the first spring in the synthesis

Fig. 7 Realization of a planar stiffness with a parallel mecha-
nism. The first spring axis w1 can be arbitrarily selected. The
second spring can be selected from the pencil of lines passing
through point T1. The third spring axis is determined by the line
passing through the instantaneous centers of twists t1 and t2,
T1 and T2.

Fig. 8 Nongeneric parallel mechanism stiffness realization
cases. (a) If the first spring axis is selected to pass through Ck,
then the spring axes w2 and w3 must be perpendicular to the
translation t1 resulting from w1. The location of w2 can be
selected arbitrarily and the spring axis w3 passes through the
instantaneous center of twist t2 5 Cw2, T2. (b) If the second
spring axis w2 passes through the stiffness center Ck, the third
spring axis w3 must be parallel to spring axis w1 and pass
through T1.

Fig. 9 Realization of a planar compliance with a serial mecha-
nism. The location of the first joint J1 can be arbitrarily selected.
The second joint can be selected from any point on the line
along wrench w1. The third joint is determined by the intersec-
tion of the two lines along wrenches w1 and w2.
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procedure presented in Sec. 4.1 (or the last spring if the other two
springs pass through the center of stiffness).

A three-joint serial mechanism can have, at most, two prismatic
joints to realize a full-rank compliance matrix. The twist associ-
ated with a prismatic joint has the form of tp in Eq. (6). Since the
third joint is uniquely determined by the first two joints, the revo-
lute joint should be assigned last in the synthesis procedure.

5 Examples

Examples are provided to demonstrate the geometry-based syn-
thesis procedures for the realization of a specified elastic behavior.
First, the realization of a stiffness matrix with a parallel mecha-
nism is demonstrated. Then, the realization of the same elastic
behavior with a serial mechanism is presented.

The elastic behavior to be realized in a known coordinate frame
is given by

K ¼
3 �2 1

�2 6 5

1 5 9

2
4

3
5; C ¼ 1

25

29 23 �16

23 26 �17

�16 �17 14

2
4

3
5

The location of the center of stiffness/compliance for this behav-
ior is calculated using Eq. (23) to be at ðð17=14Þ;�ð16=14ÞÞ.
Since the center must be inside the triangle formed by the spring
components (or location of the elastic joints), this point is used as
a reference in selecting each component.

5.1 Parallel Mechanism Realization. The geometry associ-
ated with the sequence of operations in the synthesis procedure is
illustrated in Fig. 11.

The first spring can be arbitrarily chosen. Here, a horizontal
spring passing through the origin is selected. The spring wrench is

w1 ¼ ½1; 0; 0�T

The twist associated with w1 is calculated to be

t1 ¼ Cw1 ¼
16

25
� 29

16
;� 23

16
; 1

� �T

Using Eq. (7), the location the instantaneous center T1 associated
with twist t1 is found to be ð1:4375;�1:8125Þ.

Given the selection of the first spring, the second spring wrench
is any one that passes through point T1. Here, the slope of the line
is chosen to be 4. The unit wrench passing through T1 with this
slope is

w2 ¼ ½0:2425; 0:9701; 1:8342�T

The twist associated with the second spring wrench is

t2 ¼ Cw2 ¼ 0:2122½0;�0:0716; 1�T

Using Eq. (7), the location of the instantaneous center T2 associ-
ated with t2 is calculated as (0.0716, 0).

The third spring wrench is along the line passing through T1

and T2. The spring wrench is

w3 ¼ ½0:6019;�0:7986;�0:0570�T

The three spring constants calculated using Eq. (19) are

k1 ¼ 0:8621; k2 ¼ 2:6699; k3 ¼ 5:4680

The process is verified by summing the stiffness components
using Eq. (1) yielding

K ¼
X3

i¼1

kiwiw
T
i ¼

3 �2 1

�2 6 5

1 5 9

2
4

3
5

Note that the synthesis procedure identifies the line of action
and stiffness constant for each spring. In the construction of a par-
allel mechanism, each spring can be anywhere along its line of
action.

5.2 Serial Mechanism Realization. For the parallel mecha-
nism obtained in Sec. 5.1, the dual elastic serial mechanism is
readily determined using the results of Sec. 3.3. The three joints
of the serial mechanism are located at the three vertices T1, T2,
and T3 of the triangle formed by the three spring axes (shown in
Fig. 11). The joint compliances calculated using Eq. (27) are

c1 ¼ 0:3531; c2 ¼ 0:1202; c3 ¼ 0:0867

An alternative design using the synthesis procedure of Sec. 4.2
is derived below. The geometry associated with the sequence of
operations in the synthesis procedure is illustrated in Fig. 12.

The first joint location can be chosen arbitrarily. Here, the loca-
tion of J1 is selected at (1, 0). The unit joint twist associated with
J1 is calculated using Eq. (6)

t1 ¼ ½0;�1; 1�T

Fig. 10 Nongeneric serial mechanism compliance realization
cases. (a) If the first joint is selected to pass through the center
of compliance Cc, the other two joints must be prismatic. The
direction of the second prismatic axis can be arbitrarily chosen.
The direction of the third prismatic axis is perpendicular to the
line of action of the wrench w2 5 Kt2. (b) If the second joint J2 is
on the line passing through J1 and the compliance center Cc,
the resulting wrench w2 5 Kt2 must be parallel to w1. The third
joint is prismatic and is perpendicular to w1.

Fig. 11 Synthesis of planar stiffness with a parallel mecha-
nism. The line of action for each spring is identified based on
its geometry. A parallel mechanism can be constructed with
three springs along the three spring wrenches w1, w2, and w3.

051006-8 / Vol. 9, OCTOBER 2017 Transactions of the ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanism
srobotics/article-pdf/9/5/051006/6403545/jm

r_009_05_051006.pdf by guest on 09 April 2024



The wrench w1 associated with t1 is calculated to be

w1 ¼ Kt1 ¼ ½3;�1; 4�T

Using Eq. (4), the equation of the line of action of w1 is deter-
mined to be

y ¼ � 1

3
x� 4

3

Given the selection of the first joint, the second joint J2 is
located at any point on the line of action of w1. Here, the location

of J2 is selected to be r2 ¼ ½0;�ð4=3Þ�T. Then, joint twist associ-
ated with the second joint, J2, is calculated using Eq. (6) to be

t2 ¼ � 4

3
; 0; 1

� �T

The wrench associated with t2 is calculated to be

w2 ¼ Kt2 ¼ �3;
23

3
;
23

3

� �T

The line of action of w2 is

y ¼ � 23

9
xþ 23

9

The intersection of the two action lines w1 and w3 is
ðð7=4Þ; ð23=12ÞÞ, which is the location of J3. The unit twist asso-
ciated with this location is

t3 ¼ � 23

12
;� 7

4
; 1

� �T

The three joint compliances are calculated using Eq. (21)

c1 ¼ 0:2; c2 ¼ 0:0857; c3 ¼ 0:2743

The process is verified by summing the compliance compo-
nents, similar to Eq. (1) yielding

C ¼
X3

i¼1

citit
T
i ¼

1

25

29 23 �16

23 26 �17

�16 �17 14

2
4

3
5

Note that the synthesis procedure identifies the location and joint
compliance coefficient for each elastic joint. In the construction of
a serial mechanism, the connection order of these joints does not
influence the elastic behavior achieved with the mechanism.

6 Summary

In this paper, the realization of an arbitrary planar elastic
behavior using parallel and serial mechanisms is addressed. A set
of necessary and sufficient conditions for a mechanism to realize a
given planar compliance is presented and the physical interpreta-
tions of the realization conditions are provided. The methods pre-
sented in this paper allow one to synthesize any compliant
behavior by selecting each elastic component in a parallel or serial
mechanism based on its geometry without decomposition of the
compliance/stiffness matrix. Each selected component restricts
the space of allowable candidates in subsequent selection. Since
the conditions on the mechanism geometry and joint compliances
are decoupled, the methods identified can be used for mechanisms
having VSAs to realize a desired compliant behavior by changing
the mechanism configuration and joint stiffnesses. In application,
one can use the method to judiciously select a better mechanism
geometry for a specified compliance from the infinite, but
restricted, set of options available. This method makes those
restrictions to the mechanism geometry explicit.
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