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Grasping Force Optimization
Approaches for
Anthropomorphic Hands
An appropriate choice of contact forces for anthropomorphic robotic grasping devices is
important for achieving a balanced grasp. Too little applied force may cause an object to
slip or be dropped, and too much applied force may cause damage to delicate objects.
Prior methods of grasping force optimization (GFO) in the literature can be difficult to
compare due to variability in the parameters, such as the type of grasping device, the
object grasped, and the contact model, among other factors. Additionally, methods are
typically tested on a very small number of scenarios and may not be as robust in other
settings. This paper presents a detailed analysis of three optimization approaches based
on the literature, comparing them on the basis of accuracy and computational efficiency.
Numerical examples are provided for three types of grasp commonly performed by the
human hand (cylindrical grasp, tip grasp, and tripod grasp) using both soft finger (SF)
contact and hard finger (HF) contact friction models. For each method and grasping
example, an external force is applied to the object in eighteen different directions to pro-
vide a more complete picture of the methods’ performance. Contact points between the
hand and the object are predetermined (given). A comparison of the results showed that
the nonlinear and linear matrix inequality (LMI) approaches perform best in terms of
accuracy, while the computational efficiency of the linear method is stronger unless the
number of contact points and segments becomes too large. In this case, the nonlinear
method performs more quickly. Future work will extend the problem of GFO to real-time
implementation, and a related work (briefly addressed here) examines the sensitivity of
optimization methods to variability in the contact locations. [DOI: 10.1115/1.4038684]

Keywords: Anthropomorphic hands, optimal grasping force, optimization, soft finger
contact, and hard finger contact

Introduction

As robotic grasping systems become more versatile and com-
plex, there is a growing need for robust and adaptable methods
allowing these grasping devices to interact with objects. Within
the scope of this problem, one important consideration is the
development of automatic grasping methods resulting in adaptable
and consistently stable grasps. The problem of automatic grasping
has been of interest to researchers for several decades. Such con-
siderations are applicable for a wide variety of robotic devices,
including industrial robots, humanoid robots, robotic hands, and
upper limb prostheses. Additionally, many robotic systems have
gained the ability to interact with the environment using multiple
contacts (either legs, as in a walking machine, fingers, or multiple
limbs), and the principles involved in developing a grasping sys-
tem are also applicable for other closed kinematic chains. Because
a robotic hand’s fundamental purpose is to grasp and manipulate
objects, a proper choice of grasp is crucial to success in fulfilling
tasks.

It is well-recognized that automatic grasping is a complex prob-
lem requiring many simplifications for reasonable implementa-
tion. Generally, automatic grasping involves the combination of
several challenging tasks, including the synthesis of the optimal
grasping contact points, load sharing, grasp control, grasp stabil-
ity, force closure, obstacle avoidance, and task planning, among
others.

While all components of the grasp planning and execution pro-
cess are necessary for effective grasp, this work focuses

exclusively on the optimization of grasping forces applied by the
hand on the object. Effective force computation is a necessary and
important consideration for the manipulation of an object by a
multifingered robotic hand; further, it is critical to be able to iden-
tify appropriate grasping forces in real time. While the human
hand is equipped with a complex and advanced kinematic and
sensory structure which allows for natural control of contact
forces and manipulation when grasping objects, the problem of
choosing appropriate grasping forces for anthropomorphic robotic
hands is less straightforward. Grasping force optimization (GFO)
is complicated by a variety of factors, including the nonlinearity
of constraints and objective functions, the relatively large number
of variables and constraints, and the need to compute an optimal
solution in real time. Further, some methods are acceptable for
real-time computation for a small number of contact points but
become unacceptable when the problem becomes more complex.
Additionally, the uncertainty associated with contact locations,
coefficients of friction, and the perception of object shapes due to
occlusion or sensor calibration, among other factors, add com-
plexity to the problem.

The purpose of this research is to perform a more detailed anal-
ysis of several possible grasping force optimization approaches as
an extension of the work presented in Ref. [1]. The benefits and
drawbacks unique to each method are compared to determine
which approaches are most appropriate for determining contact
forces. Namely, this work includes details regarding the tradeoff
between accuracy and computational efficiency and associated
factors (such as the number of segments used to approximate the
friction constraint) to inform choices about which optimization
approach is best. An anthropomorphic, five-fingered model of the
hand is used to test the optimization approaches on a series of
numerical examples representing grasps commonly performed by
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the human hand. The optimization approaches used include linear
and nonlinear methods as well as the formulation of the friction
constraints using linear matrix inequalities (LMIs).

One of the primary barriers to progress in GFO research has
been the nonlinearity of the friction constraint represented by
Coulomb’s law. The most common early approach to GFO was to
linearize the problem and solve for the optimal grasping forces
using linear programming (LP) methods. While LP methods can
be advantageous in terms of computational efficiency, they may
provide grasping forces which are either too conservative or
which violate the nonlinear friction constraint. Accuracy of LP
methods also depends partially on how many segments are used in
the linear approximation of the friction constraint. Adding more
segments improves the accuracy of the solution but sacrifices
computational efficiency; the computational time can become sig-
nificantly larger for even a moderate number of segments. The
most common LP approaches to solving the GFO problem are the
simplex method [2–4] and interior point methods [5,6]. Interior
point methods typically obtain solutions more quickly than the
simplex method for large problems; however, they also require an
initial feasible starting point.

Progress in GFO has typically been driven by breakthroughs in
problem formulation, where the GFO for multifingered hands was
first explored in greater depth by Kerr and Roth [7]. Buss et al. [8]
discovered that the friction force constraints and force balance
constraints may be represented by the positive definiteness of a
certain matrix subject to linear constraints. This approach has
been used by many researchers since its development and is bene-
ficial because it retains the nonlinearity of the friction constraints
without increasing the computation time unreasonably. Next, Han
et al. [9] cast the friction cone constraints as LMIs and formulated
the GFO problem as a convex optimization problem. The method
presented by Buss et al. [8] also develops appropriate LMIs for
both hard finger (HF) and soft finger (SF) friction constraints, in
contrast to previous approaches. The combination of LMIs [10]
and convex optimization has since been implemented by other
researchers [11].

Another popular approach is to split algorithms into online and
offline phases [12,13]. The computation time required during
online implementation is greatly reduced by solving as much of
the problem as possible offline. It is also possible to find a subopti-
mal but still acceptable solution to reduce computation time. Non-
linear approaches have also been studied because of their
increased accuracy over LP methods. A central focus of research
on nonlinear approaches is to make them fast enough for online
applications. Among the most suitable approaches for real-time
control and implementation are neural networks (NN). One
approach of this type was developed by Xia et al. [14], where the
method is able to converge to an optimal solution with any initial
point. Other approaches have been developed for generic prob-
lems similar to GFO [15,16], but very few neural networks have
been developed to solve the GFO problem specifically.

There are also multiple methods of decomposing contact forces
for the improvement of GFO [17,18]. One such method separates
the contact force into two components: the manipulation force,
which contributes directly to balancing external forces applied to
the object, and the internal force, which does not contribute to bal-
ancing object forces but which may be adjusted to meet other con-
straints [19]. Approaches have also been developed to assess the
quality of a given grasp. A review of grasp quality measures is
provided by Suarez et al. [20].

Currently available GFO approaches can be difficult to compare
due to variable factors in the optimization approaches and in the
numerical examples (e.g., object type, number of contact points,
number of fingers, and contact model). In the previous work [1],
the authors presented a basic examination of three methods of
grasping force optimization: a linear method, a nonlinear method,
and a linear matrix inequality method. As an extension of the work
in Ref. [1], this paper presents a more thorough examination of
three methods of GFO for anthropomorphic hands and for some

grasps which have been identified as common in everyday life.
Each method is tested for three different grasping scenarios, where
the external force is applied to the object in eighteen different direc-
tions. The information provided presents a more complete picture
about how each GFO method performs in a variety of settings.

This paper is organized as follows: First, the generic problem
formulation for GFO is described. Next, the development of each
specific optimization method from Ref. [1] is given. The three
numerical examples are shown, along with the directions of
applied forces for each example, and the sensitivity of methods
with respect to variability in contact locations is briefly addressed.
Results and discussion are provided for each force optimization
method. Finally, concluding remarks are provided, and future
work is discussed.

Grasping Force Optimization Problem Formulation

The goal of grasping force optimization is to find a set of con-
tact forces between the hand and the object which (1) balances the
object weight and other external forces applied to the object; (2)
minimizes the force applied to the object by the hand contacts;
and (3) meets friction, torque limit, and joint limit constraints. For
the following series of equations, parameter dimensions are pro-
vided in Table 1 for a hand with nc contacts between the hand and
the object. In this paper, both HF and SF contact models are used.
Table 1 provides dimensions of parameters for both contact mod-
els. Figure 1 depicts a visual representation the grasping problem,
showing two arbitrary fingers j and m, where fNg represents an
inertial frame, fBg represents the coordinate frame at the center of
mass of the object, and the contact frames between the hand and
the object for i ¼ 1;…; nc are represented by fCig. In fCig, ni is
an axis normal to the object, and ti and oi are the two axes tangen-

tial to the object. For finger i with joints 1 through ki, qi ¼
½ qi;1 � � � qi;ki �

T
is the vector of joint angles, and si ¼

½ si;1 � � � si;ki �
T

is the vector of joint torques and where
k1þ…þknc¼ k total joints for the hand, and the total vectors for

joint angles and joint torques are q ¼ ½ qT
1 � � � qT

nc
�T and

s ¼ ½ sT
1 � � � sT

nc
�T, respectively (note that in Fig. 1, there are kj

joints associated with finger j and km joints associated with finger
m). In general, a subscript i,n denotes a quantity associated with
the normal axis in fCig. Similarly, subscripts i,t and i,o denote
quantities associated with the tangential axes in fCig, and a sub-
script i,m denotes a quantity associated with the moment about the
normal axis in fCig.

The force balance equation is shown in Eq. (1). The grasp
matrix, Gi, provides a mapping between the contact wrench (i.e.,
a vector containing the force and moment) applied to the object
by the hand in fCig, ki, and the external wrench applied to the
object, g. The grasp matrices for individual contacts may be com-

bined by GT ¼ ½GT
1 � � � GT

nc
�, and the individual contact

wrenches are combined by k ¼ ½ kT
1 � � � kT

nc
�T. A detailed deri-

vation of Gi may be found in Ref. [20]. Equation (2) represents
that acceptable joint torques may fall anywhere within the torque

Table 1 Parameter dimensions

Parameter Dimension (HF) Dimension (SF)

ki ki ¼ ½ ki;n ki;t ki;o �T ki ¼ ½ ki;n ki;t ki;o ki;m �T
g 6� 1 6� 1
G 6� 3nc 6� 4nc

JðqÞ 3nc � k 4nc � k
se k � 1 k � 1
s k � 1 k � 1
sL; sU k � 1 k � 1
qL; qU k � 1 k � 1
li Scalar; for i ¼ 1;…; nc Scalar; for i ¼ 1;…; nc

li;t Scalar; for i ¼ 1;…; nc Scalar; for i ¼ 1;…; nc
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limits (sL; sU) and Eq. (3) represents the torque balance equations;
therefore, the two constraints may be combined as shown in Eq.

(4). JT
i ðqÞ ði ¼ 1;…; ncÞ represents the transpose of the hand Jaco-

bian matrix, which provides a mapping between fCig and the joint
coordinate frames. The hand Jacobian matrices for individual con-

tacts may be combined by JðqÞ ¼ ½ J1ðqÞ � � � Jnc
ðqÞ �T. Joint

angles are constrained to fall within their joint limits (qL; qU),
which is represented by Eq. (5)

g ¼ �Gk (1)

sL � s � sU (2)

JTðqÞk ¼ s (3)

sL � JTðqÞk � sU (4)

qL � q � qU (5)

Friction constraints may be represented in a number of different
ways. Here, two contact models, HF contact and SF contact, are
discussed. In the HF model, contact is represented by a point con-
tact with friction which is capable of exerting both normal and
tangential forces on the object. The HF model is represented by
Coulomb’s Law and is shown in Eq. (6). The SF model is useful
when significant contact friction exists but allows for slight defor-
mation between the contacts. In addition to exerting normal and
tangential forces on the object, the SF contact model, shown in
Eq. (7), may also generate a moment about the contact normal.
HF and SF contacts are both used in this paper and impact the
dimensions of ki, G, and JðqÞ as shown in Table 1. Finally, the
normal component of the force applied to the object by each con-
tact, ki;n, is constrained to be positive as shown in Eq. (8)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
i;t þ k2

i;o

q
� liki;n (6)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

li

k2
i;t þ k2

i;o

� �
þ 1

li;t

k2
i;m

s
� ki;n (7)

ki;n � 0 (8)

The generic optimization formulation is, therefore, written as
shown in Eq. (9), where f is the objective function to be mini-
mized, and = is used to denote the generalized friction constraint.
For this problem, contact points between the hand and the object
are predetermined, and appropriate joint angles are found using
inverse kinematics as described in Ref. [21]. Because joint angles

are known, it is unnecessary to include the joint limit constraints
at this stage. The specific formulation of the problem needs adap-
tations depending on the quantity to be minimized and the type of
optimization used. Adaptations of the problem formulation are
described in the following section:

find: k ¼ ½kT
1 ;…; kT

n �
T

minimize: f
subject to:

g ¼ �Gk

sL � JTðqÞk � sU

k 2 =

ki;n � 0

(9)

Optimization Approaches

Manipulation and Internal Forces. As mentioned earlier, the
force applied to the object can be split into two forces, the manip-
ulation force and the internal force, as shown in Eq. (10). In this
paper, the quantity of interest to be minimized is the internal force
applied to the object by contacts. From the force balance equation
shown in Eq. (1), it is possible to solve for the contact wrench, k,
as shown in Eq. (11), where Gþ is the pseudoinverse of G and
NðGÞ is the null space basis of G. The manipulation wrench,
kman ¼ �Gþg, is the wrench which contributes directly to balanc-
ing g. The wrenches which lie in the null space of G are the inter-
nal forces, kint, and can be adapted to satisfy the remaining
constraints shown in Eq. (9). Manipulation forces can be solved
for directly; thus, the problem can be simplified by solving for the
manipulation force and using c as the design variable vector and
internal force as the quantity to be minimized. The dimension of c
is dependent on the size of the null space basis

k ¼ kman þ kint (10)

k ¼ �Gþgþ NðGÞc (11)

Problem Formulation With Nonlinear Constraints. The
problem formulation which allows for nonlinear friction con-
straints is shown in Eq. (12), where the objective function f repre-
sents the square summation of the internal forces. Because the
force balance is already satisfied by direct calculation of kman, the
force balance constraint can be eliminated. The general represen-
tation of the friction constraint is k 2 =; that is, the contact
wrench must lie within the friction boundaries. For the HF

Fig. 1 Visual representation of grasping problem
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contact, friction constraints are represented directly by Eq. (6).
For the SF contact, the friction constraints are represented by Eq.
(7). The optimization problem is solved using the fmincon func-
tion in MATLAB

find: c
minimize: f ¼ kT

intkint

subject to:
sL � JTðqÞk � sU

k 2 =
ki;n � 0

(12)

Problem Formulation With LMIs. The second problem for-
mulation expresses friction constraints as LMIs as presented in
Ref. [4]. Detailed proofs of equivalence to the nonlinear con-
straints are contained in that paper; the general problem formula-
tion using LMIs is described here.

For the friction constraints chosen for this problem, given in
Eqs. (6) and (7), the formulations as LMIs are shown for HF and
SF contact models in Eqs. (13) and (14), respectively, where i ¼
1;…; nc contacts. Then, Pi for HF contact may be represented by
LMIs as shown in Eq. (15), and Pi for SF contact may be repre-
sented by LMIs as in Eq. (16). Each matrix Pi may then be com-
bined into one block diagonal matrix, P, where Pi matrices are
contained along the diagonal as shown in Eq. (17). Equation (18)
shows the resulting friction constraint, where 0 is a matrix of all 0
entries with the same dimensions as PðkÞ

Pi ¼
liki;n 0 ki;t

0 liki;n ki;o

ki;t ki;o liki;n

2
64

3
75 for the HF model (13)

Pi ¼

ki;n 0 0
1

li

ki;t

0 ki;n 0
1

li

ki;o

0 0 ki;n
1

lt;i

ki;m

1

li

ki;t
1

li

ki;o
1

lt;i

ki;m ki;n

2
66666666666664

3
77777777777775

for the SF model (14)

Pi ¼ ki;n

li 0 0

0 li 0

0 0 li

2
664

3
775þ ki;o

0 0 0

0 0 1

0 1 0

2
664

3
775þ ki;t

0 0 1

0 0 0

1 0 0

2
664

3
775
(15)

Pi ¼ ki;n

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775þ ki;o

0 0 0 0

0 0 0
1

li

0 0 0 0

0
1

li

0 0

2
666666664

3
777777775

þ ki;t

0 0 0
1

li

0 0 0 0

0 0 0 0

1

li

0 0 0

2
666666664

3
777777775
þ ki;m

0 0 0 0

0 0 0 0

0 0 0
1

lt;i

0 0
1

lt;i

0

2
6666666664

3
7777777775

(16)

PðkÞ ¼
P1 0 0

0 . .
.

0

0 0 Pnc

2
64

3
75 (17)

PðkÞ � 0 (18)

The new problem formulation using LMIs is shown in Eq. (19).
Again, the objective function minimizes the square summation of
the internal forces. Formulating the constraints both nonlinearly
and as LMIs while using the same objective function will allow
for a direct comparison of the computational efficiency gained
through LMI constraints. Again, the problem is solved using the
fmincon function in MATLAB

find: c
minimize: f ¼ kT

intkint

subject to:
sL � JTðqÞk � sU

PðkÞ � 0

ki;n � 0

(19)

Linear Programming Method. The simplex method of linear
programming has previously been used as a common method for
grasping force optimization [2]. In general, the simplex method
works by generating a set of all basic feasible solutions, one of
which is guaranteed to be an optimum, and systematically search-
ing these solutions to find the optimum. Computational efficiency
of the simplex method is sacrificed when the number of basic fea-
sible solutions to be inspected becomes very large. By contrast,
interior point methods, some of which have been implemented in
grasping force optimization, are computationally efficient but
require an initial feasible solution to start the algorithm. In the
previous work, several LP algorithms were tested to determine
which method performed the most quickly [1]. Based on this com-
parison, the LP problem in this paper is solved using the linprog
function in MATLAB with the interior point legacy algorithm.

First, it is necessary to linearize the friction constraints shown
in Eq. (6). As represented in Eq. (6), the friction constraint takes
the form of a quadratic cone. To linearize the constraint, Eq. (6) is
approximated as a polyhedral cone. The transformation of the fric-
tion constraint is visually represented in Fig. 2, and Eq. (20)
shows the force balance constraint approximated by the polyhe-
dral cone, where Ti can be calculated for the HF contact as shown
in Eq. (21) for each contact i ¼ 1;…; nc where each column for
l ¼ 1;…; ns represents one segment of the polyhedral cone. ns is
the total number of segments used to create the polyhedral cone,
and Ti has dimensions 3� ns (for example, in Fig. 2, Ti approxi-
mates the cone using six segments and has dimensions 3� 6).
The total force balance constraint can be represented by Eq. (22),
where T ¼ ½T1;…;Tnc

�, r ¼ ½rT
1 …rT

n �
T
, and r � 0 (note that r

has dimensions of ns � 1). For this problem, it is more convenient
to formulate linearized friction constraints using their dual form,
represented by F, as shown in Eq. (23) and as detailed in Ref.
[20]. The linearized problem formulation can be expressed as in
Eq. (24)

Giki ¼ Tiri (20)

Ti ¼

1 � � � 1 � � � 1

li cos
2p
ns

� �
� � � li cos

2lp
ns

� �
� � � li cos

2nsp
ns

� �

li sin
2p
ns

� �
� � � li sin

2lp
ns

� �
� � � li sin

2nsp
ns

� �

2
6666664

3
7777775

3xns

(21)
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Gk ¼ Tr (22)

Fk � 0 (23)

find: c
minimize: f ¼ cTc
subject to:

sL � JTðqÞk � sU

Fk � 0

ki;n � 0

(24)

Numerical Examples

Kinematics for the hand simulation were developed using the
Denavit–Hartenberg method [22]. The dimensions of the palm
were chosen to match the average male human hand [23], and the
links of phalanges, along with upper and lower limits for each
joint angle, were determined based on Ref. [24]. In total, the
length of the hand is 18.9 cm and its length is 8.4 cm. Figure 3
shows a general view of the hand with a palm fixed coordinate
system attached to the center of the palm which is used to define
the direction of force applied to the object.

Three types of grasp which have been identified as important
and frequently used in daily life are chosen for numerical exam-
ples, tip grasp, tripod grasp, and cylinder grasp [25], as shown in
Fig. 4. Tip grasp and tripod grasps make contact only at the finger-
tips with nc ¼ 2 and nc ¼ 3, respectively, whereas cylinder grasp
allows each phalanx and the palm to make contact with the object
at one point (nc¼ 15).

Varying parameters were assigned to each grasping example
to test each optimization method under different conditions. All
coefficients of friction were estimated based on ranges measured
between the fingertips and various materials in Ref. [26]. For
the tip grasp, the object is a cube with side lengths of 2.1 cm.
The object mass is set to 0.1 kg with a small coefficient of
friction of li ¼ 0:6 for all contacts. Force is applied to the cen-
ter of mass of the cube in one of 18 different directions, shown
in Fig. 5 and detailed in Table 2 (in Table 2, aþ indicates a
force applied in the positive direction, and a– indicates a force
applied in the negative direction). For the tripod grasp, the
object is a cylinder with radius 2.1 cm and length 2.8 cm. The
object mass is set to 1 kg with a coefficient of friction of li ¼ 2
for all contacts. For the cylinder grasp, the object is a cylinder
with radius 3.6 cm and length 12.6 cm. The object mass is set to
10 kg with a coefficient of friction of li ¼ 1 for all contacts.
The initial guesses for all cases are c ¼ 0. Because the linear
problem formulation is convex, its solution will provide a global
optimal, whereas the nonlinear and LMI problems will yield
local optimal solutions.

Sensitivity Analysis

In this section, a brief overview is provided of a probabilistic
sensitivity analysis which was conducted to determine whether
the proposed optimization methods remain robust when uncer-
tainty in the positions of the contact locations is considered; the
details of the analysis, along with complete results, are given in
Ref. [27].

A Monte Carlo simulation is conducted to determine the proba-
bility of failure, i.e., the probability that a grasp cannot be main-
tained when variability in the contact locations is introduced. The

Fig. 2 Approximation of a quadratic cone as a polyhedral cone

Fig. 3 Generic view of the hand
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threshold between a successful and failing result is determined
based on the limit state equation, as shown in Eq. (25), where fmin

represents the minimum acceptable force required to maintain
grasp and fopt is the optimal force obtained for the deterministic
solution (the solution for which no variability is considered in the
contact locations). Each iteration of the Monte Carlo simulation
randomly selects contact locations within the probability distribu-
tions assigned in Ref. [28], and the iteration is assessed as success-
ful or failure. The probability of failure is then calculated as in
Eq. (26), where nfailure is the total number of failing results and
nsamples is the total number of iterations. Sensitivity levels are also
calculated as shown in Eqs. (27) and (28) according to the method
proposed in Ref. [28] to determine whether or not the probability
of failure is more likely to change due to variability in a specific
factor

z ¼ fmin � fopt (25)

pf ¼
nfailure

nsamples

(26)

ali
¼ @pf

@li

ri

pf

� �
(27)

ari
¼ @pf

@ri

ri

pf

� �
(28)

Results

Grasping Force Optimization. For each numerical example,
the following comparisons were made: (1) difference in computa-
tion time between the HF contact and the SF contact, (2) differ-
ence in computation time among the three optimization methods
(HF contact), (3) difference in computation time for the linear
method with number of segments ns ¼ 4; 10; 20, (4) difference in
calculated optimal forces between the HF and the SF contact, (5)
difference in calculated optimal forces among the three optimiza-
tion methods (HF contact), and (6) difference in calculated opti-
mal forces for the linear method with ns ¼ 4; 10; 20.

For each direction in which force was applied, 100 examples
were run with varying amounts of force in the given direction.
Average values and standard deviations for computation time for
all optimization methods are reported in Table 3.Fig. 5 Forces applied to objects

Table 2 Directions of applied forces in eighteen grasping
scenarios

Force combination gX gY gZ

1 þ
2 �
3 þ
4 �
5 þ
6 �
7 þ þ
8 þ �
9 � þ
10 � �
11 þ þ
12 þ �
13 � þ
14 � �
15 þ þ
16 þ �
17 � þ
18 � �

Fig. 4 Types of grasp: (a) tip grasp, (b) tripod grasp, and (c)
cylinder grasp
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Several patterns emerge from the data shown in Table 3. First,
the nonlinear method consistently solves the problem more
quickly than the LMI method. For tip grasp, when there are only
two contact points with the object, the difference is small but
becomes much larger as the number of contact points increases.
The linear method also solves the problem more quickly than the
nonlinear and LMI methods in most cases. Exceptions occur for
the tripod and cylinder grasps, where the nonlinear method solves
more quickly than the linear method using ns ¼ 20. In all cases,
the computation time grows as more contact points are consid-
ered, and it grows substantially when whole hand grasp is consid-
ered; many of the computation times shown for the cylinder grasp
are too slow for practical application. Similarly, in the case of
whole hand grasp, the computation time grows quickly as the
number of segments used to linearize the friction constraint
becomes larger. The difference is so significant that the nonlinear
method actually outperforms the linear method when the number
of segments becomes too large. Finally, methods which use the
HF contact model consistently solve more quickly than the SF
model. So, if the optimal forces calculated for the HF and SF con-
tact are similar, it would make sense to use the HF contact model
since the computation time is smaller.

Tables 4–7 show some sample results of the forces computed
for the tip grasp and cylinder grasp, considering both the HF and
the SF contact. Results are presented in Newtons in terms of k,
the grasping force in the contact frames. In general, for the HF
contact, k takes the form k¼½k1;n k1;t k1;o ��� knc ;n knc ;t knc;o �

T
.

For the tip grasp, the object is contacted in two places (nc¼2).
Similarly, results for the SF contact are shown for two
methods (the approximation of SF contact for the linear case
is not presented here) where k takes the form k¼½k1;n k1;t k1;o

k1;m ��� knc;n knc;t knc;o knc;m �T. In Table 6, only the rows with
the significantly large differences between the nonlinear and linear
cases are included; all other results are eliminated for brevity,
as there are 15 contacts between the hand and the object for
cylinder grasp. Similarly, in Table 7, only the rows with the larg-
est differences between the nonlinear and LMI cases are shown.
In Tables 6 and 7, the rows with the largest differences between
the HF contact and the SF contact for the nonlinear case are
shown in bold.

For all optimization methods presented in Tables 4 and 5, the
forces meet the expected constraints (normal force must be non-
negative, normal and tangential forces must fall within friction

constraint boundaries). For tip grasp, the nonlinear and LMI
results are identical in both the HF and SF contact cases. The nor-
mal forces for the linear methods differ from those for nonlinear
and LMI methods but become acceptably close as the number of
segments increases from 4 to 20. It is also notable that in the SF
case, the additional term which represents the moment about the
normal does not contribute much to the applied forces.

For the HF contact, the nonlinear and LMI results remain very
close, while for SF contact, certain results differ much more sig-
nificantly. In general, there is good agreement between the nonlin-
ear and LMI methods about which phalanges of the fingers need
to apply force (in most cases, the phalanges for which the forces
are very close to zero are the same), but there are differences in
the magnitudes of the forces, which typically differ by 2 or 3 N.
For the HF contact, once again, there is a good agreement between
nonlinear and linear methods about which phalanges need to apply
forces, but the differences in magnitudes are in the 4–5 N range.
Most notably, the force applied by the middle finger, distal pha-
lanx is substantially different between the nonlinear and linear
cases. For most contact points, the results for the three linear cases
do not change much as the number of segments changes. For this
reason, differences between the linear and nonlinear cases may be
attributed to differences in the objective function rather than
insufficient segments to approximate the friction constraint.

Tables 8 and 9 show the percent differences among optimiza-
tion methods for tip and tripod grasps and HF contact, where rep-
resentative percent differences are shown considering all force
directions. Table 8 shows very small differences in the optimal
forces calculated using the nonlinear and LMI methods for HF
contact, and the differences between the nonlinear and linear
methods become smaller as the number of segments increases.
When using 20 segments to approximate the friction constraint,
all differences are below 1%.

For tripod grasp, the results produced by the nonlinear and LMI
methods are very small. In general, the percent difference between
nonlinear and linear methods also decreases as more segments are
used to approximate the friction cone. The differences are larger
for tripod grasp than for tip grasp but are still always below 15%.
However, it is also notable that for the middle finger contact point,
the percent difference actually increases as more segments are
used.

Probabilistic and Sensitivity Analysis. A brief summary of
the major results of the probabilistic and sensitivity analysis is

Table 4 Representative data for tip grasp, HF contact

Nonlinear LMI Linear, 4 segments Linear, 10 segments Linear, 20 segments

Thumb k1;n(N) 0.827 0.827 1.29 0.879 0.842
k1;t(N) �0.245 �0.245 �0.247 �0.246 �0.246
k1;o(N) 0.051 0.051 �0.050 0.039 0.047

Index k2;n(N) 0.827 0.827 1.29 0.879 0.842
k2;t(N) �0.240 �0.240 �0.238 �0.240 �0.240
k2;o(N) �0.435 �0.435 �0.536 �0.446 �0.438

Table 3 Average and standard deviation values of computation
time for all grasps, in seconds

Tip Tripod Cylinder

Average SD Average SD Average SD

Nonlinear hard 0.026 0.040 0.030 0.045 1.66 1.18
Nonlinear soft 0.029 0.020 0.055 0.022 3.08 1.94
LMI hard 0.029 0.040 0.060 0.044 4.63 2.20
LMI soft 0.036 0.020 0.122 0.169 10.7 3.30
Linear 4 segments 0.0091 0.021 0.012 0.025 0.235 0.055
Linear 10 segments 0.011 0.024 0.017 0.036 0.716 0.226
Linear 20 segments 0.016 0.024 0.052 0.090 3.52 1.31

Table 5 Representative data for tip grasp, SF contact

Nonlinear LMI

Thumb k1;n(N) 0.841 0.841
k1;t(N) �0.234 �0.234
k1;o(N) 0.047 0.047
k1;m(N) 0.00099 0.00099

Index k2;n(N) 0.841 0.841
k2;t(N) �0.251 �0.251
k2;o(N) �0.438 �0.438
k2;m(N) �0.0001 �0.0001
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presented in this section, where complete details of the results
may be found in Ref. [27]. Table 10 shows the probabilities of
failure for each method and grasp under investigation. The main
observation which can be drawn from these results is that the non-
linear and LMI optimization methods remain significantly more
robust to variability in contact locations than the linear method;
even despite increasing the number of segments used to approxi-
mate the friction constraint, the linear method remains far from
acceptable for use in grasping force optimization.

Discussion

In general, the nonlinear method seems to have the best com-
promise of computation speed and accuracy. Although the linear
method performs more quickly for a small number of segments or
a small number of fingers, differences occur between the nonlin-
ear and linear methods due to an insufficient number of segments
or variability in the objective functions. Also, for a large number
of contacts and a large number of segments, the nonlinear method
has better accuracy and better computation time compared to the
linear method. For whole hand grasp, significantly large differen-
ces were also observed between the HF and the SF contact.
Despite these differences, it is likely that HF contact is still a bet-
ter approach due to the difference in computation time between
the two methods.

A number of possible challenges exist when implementing
GFO methods to control a real robotic hand. One significant factor
affecting the control of an artificial hand would be the sensitivity
of the presented methods to changes or errors in the contact loca-
tion. The authors have conducted a detailed examination of this

Table 6 Representative data for cylinder grasp, HF contact

Nonlinear LMI Linear, 4 segments Linear, 10 segments Linear, 20 segments

Thumb, proximal phalanx k1;n(N) 6.70 6.70 5.01 3.94 4.01
k1;t(N) 2.44 2.45 4.54 3.80 3.94
k1;o(N) 2.98 2.99 �0.475 �0.448 �0.460

Index, distal phalanx k5;n(N) 6.53 6.53 6.92 6.76 6.79

k5;t(N) �6.52 �6.52 �6.87 �6.75 �6.79

k5;o(N) �0.270 �0.271 �0.050 0.028 0.020

Middle, middle phalanx k7;n(N) 0.00086 0.00052 5.16 4.91 4.93
k7;t(N) �0.00039 �0.00044 �5.11 �4.90 �4.92
k7;o(N) 0.000016 �0.000025 �0.050 0.0280 0.019

Middle, distal phalanx k8;n(N) 14.8 14.8 6.79 6.57 6.55
k8;t(N) �14.8 �14.8 �6.67 �6.56 �6.55
k8;o(N) �0.461 �0.466 �0.118 0.027 0.0045

Ring, distal phalanx k11;n(N) 17.8 17.8 21.8 23.7 23.7
k11;t(N) �17.8 �17.8 �21.7 �23.7 �23.7
k11;o(N) �0.511 �0.510 �0.082 0.031 0.018

Pinky, distal phalanx k13;n(N) 6.78 6.78 5.58 5.10 5.07

k13;t(N) �6.77 �6.78 �5.53 �5.09 �5.07

k13;o(N) �0.194 �0.195 �0.050 0.028 0.020

Palm contacts k15;n(N) 22.4 22.4 27.1 26.9 27.0
k15;t(N) 22.4 22.4 27.0 27.0 27.0
k15;o(N) �0.825 �0.823 �0.050 0.028 0.0081

Table 8 Percent differences among optimization types, tip grasp, HF contact

Nonlinear versus LMI Nonlinear versus linear, 4 Nonlinear versus linear, 10 Nonlinear versus linear, 20

Thumb k1;n(N) 1.07� 105 38.0 5.52 0.902
k1;t(N) 6.6� 108 0.288 0.035 0.0056
k1;o(N) 1.07� 105 38.0 5.53 0.903

Index k2;n(N) 1.07� 105 38.0 5.52 0.902
k2;t(N) 6.7� 108 0.293 0.035 0.0057
k2;o(N) 1.07� 105 38.0 5.53 0.903

Table 7 Representative data for cylinder grasp, SF contact

Nonlinear LMI

Thumb, proximal phalanx k1;n(N) 6.67 5.56
k1;t(N) 4.72 1.85
k1;o(N) 0.013 0.011
k1;m(N) 0.377 0.665

Index, distal phalanx k5;n(N) 10.5 8.12

k5;t(N) �10.5 �8.12

k5;o(N) �0.00065 �0.00083

k5;m(N) �0.046 �0.057

Middle, distal phalanx k8;n(N) 16.1 13.4
k8;t(N) �16.1 �13.4
k8;o(N) �0.003 �0.002
k8;m(N) �0.054 �0.068

Ring, distal phalanx k11;n(N) 15.2 12.7
k11;t(N) �15.2 �12.7
k11;o(N) �0.00027 �0.00188
k11;m(N) �0.0483 �0.05974

Pinky, distal phalanx k13;n(N) 2.30 0.338

k13;t(N) �2.29 �0.338

k13;o(N) �0.00054 0.00014

k13;m(N) �0.020 �0.0049

Palm contacts k15;n(N) 25.2 12.8
k15;t(N) 25.2 35.9
k15;o(N) �0.0057 �0.0033
k15;m(N) 0.077 0.155
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problem, presented in Ref. [27] and briefly discussed in this work,
consisting of Monte Carlo simulations to identify both the proba-
bility of failure (where “failure” indicates that the constraints of
the problem are violated, and the grasp cannot be maintained) and
sensitivity levels when variability in the contact locations is con-
sidered. Two major results emerged from this analysis. First, the
nonlinear and LMI methods both remain robust for all grasps
when contact location variability is introduced (probabilities of
failure, at a maximum, are 2% and are often significantly less),
whereas the linear method, in general, is likely to yield higher
probabilities of failure. Second, the probability of failure is likely
to be higher, regardless of the optimization method, when the
grasp becomes less restrictive, i.e., the highest probabilities of
failure occur for tip grasp when the number of contact points
between the hand and the object is lowest. The results presented
in Ref. [27] complement and strengthen the results of this paper
by showing that two of the optimization methods remain viable
when variability is introduced; further, combining the results of
the analysis presented in this work and the results presented in
Ref. [27], the nonlinear method emerges clearly as the most
appropriate approach since it requires less computation time than
the LMI method. Additional details on the sensitivity of the meth-
ods presented here to changes in the contact location may be
found in Ref. [27].

Other factors which may affect the control of the real robotic
hand include the sensitivity of sensors to measure forces and con-
tact points as well as the requirements for these sensors. It is cru-
cial to identify these and other factors which may affect the
implementation of GFO methods. The validation of these results
using experimental methods is, therefore, a necessary subsequent
step in this work.

Additionally, the numerical examples presented in this paper
deal only with static forces. Realistically, an artificial hand must
be capable of adapting to variable loads. Future work will include
an extension of the methods presented here (focusing primarily on
the nonlinear, HF contact method) to find solutions when the
external force applied to the object varies. Other methods similar
to this formulation will also be explored to improve computational
efficiency for online implementation. The nonlinear, HF contact
method will also be compared to a neural network to determine
which approach is more appropriate. A suboptimal approach or an
approach which splits the problem into offline and online compo-
nents may be beneficial for obtaining solutions more quickly. It

would also be desirable to allow the hand to change contact loca-
tions (i.e., manipulate an object) after contact has been estab-
lished. Future work will also explore methods of computing
optimal grasping forces combined with object manipulation.

Conclusion

In this paper, a detailed examination of the three methods to
predict optimal grasping forces in Ref. [1] was presented for three
common types of grasps performed by anthropomorphic artificial
hands. A probabilistic and sensitivity analysis was carried out. In
general, the nonlinear method using the HF contact performed
with the best combination of accuracy and computation speed,
although the linear method was often more efficient except when
the number of segments and contacts between the hand and the
object became too large. However, in conjunction with the sensi-
tivity analysis considering variability in the contact locations con-
ducted in Ref. [28], the nonlinear method emerges clearly as the
most appropriate optimization method since the linear method, in
general, does not remain robust to changes in the contact loca-
tions. Future work will include extending the methods presented
in this paper to cases for which the external load applied to the
object varies and comparing them to a neural network. Addition-
ally, methods of combining object manipulation with optimal
force calculation will be explored.
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