Intelligent robotic systems that can react to unprogrammed tasks and unforeseen environmental changes require augmented “softness.” Robogami, a low-profile origami robot, addresses intrinsic (material-wise) and extrinsic (mechanism-wise) softness with its multi-degree-of-freedom (DOF) body driven by soft actuators. The unique hardware of the Robogami and its submillimeter thick construction enable diverse transformations as those achievable by the paper origami. The presented Robogami shows the first fully integrated version that has all the essential components including its controller within a thin sheet. Construction of this robot is possible via precise, repeatable, and low cost planar fabrication methods often reserved for microscale fabrications. In this research, we aim at expanding the capabilities of Robogamis by embedding bidirectional actuation, sensing, and control circuit. To assess the performance of the proposed sensors and actuators, we report on the performance of these components in a single module and in the four-legged crawler robot.

References

1.
Firouzeh
,
A.
,
Ozmaeian
,
M.
,
Alasty
,
A.
, and
Iraji zad
,
A.
,
2012
, “
An IPMC-Made Deformable-Ring-Like Robot
,”
Smart Mater. Struct.
,
21
(
6
), p.
065011
.10.1088/0964-1726/21/6/065011
2.
Matsuda
,
T.
, and
Murata
,
S.
,
2006
, “
Stiffness Distribution Control—Locomotion of Closed Link Robot With Mechanical Softness
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
1491
1498
.10.1109/ROBOT.2006.1641919
3.
Song
,
Y. S.
,
Sun
,
Y.
,
van den Brand
,
R.
,
von Zitzewitz
,
J.
,
Micera
,
S.
,
Courtine
,
G.
, and
Paik
,
J.
,
2013
, “
Soft Robot for Gait Rehabilitation of Spinalized Rodents
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Toyko, Japan, Nov. 3–7, pp.
971
976
.10.1109/IROS.2013.6696468
4.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.10.1016/j.tibtech.2013.03.002
5.
Huai-Ti
,
L.
,
Gary
,
G. L.
, and
Barry
,
T.
,
2011
, “
Goqbot: A Caterpillar-Inspired Soft-Bodied Rolling Robot
,”
Bioinspiration Biomimetics
,
6
(
2
), p.
026007
.10.1088/1748-3182/6/2/026007
6.
Hines
,
L.
,
Arabagi
,
V.
, and
Sitti
,
M.
,
2012
, “
Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
987
990
.10.1109/TRO.2012.2197313
7.
Felton
,
S.
,
Tolley
,
M.
,
Onal
,
C.
,
Rus
,
D.
, and
Wood
,
R.
,
2013
, “
Robot Self-Assembly by Folding: A Printed Inchworm Robot
,”
International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
277
282
.10.1109/ICRA.2013.6630588
8.
Noh
,
M.
,
Kim
,
S.-W.
,
An
,
S.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1007
1018
.10.1109/TRO.2012.2198510
9.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.10.1002/adfm.201102978
10.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
4608
4613
.10.1109/ICRA.2011.5980139
11.
An
,
B.
, and
Rus
,
D.
,
2012
, “
Programming and Controlling Self-Folding Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
3299
3306
.10.1109/ICRA.2012.6224789
12.
Paik
,
J.
,
An
,
B.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2011
, “
Robotic Origamis: Self-Morphing Modular Robots
,”
2nd International Conference on Morphological Computation
(
ICMC
), Venice, Italy, Sept. 12–14.
13.
Firouzeh
,
A.
,
Sun
,
Y.
,
Lee
,
H.
, and
Paik
,
J.
,
2013
, “
Sensor and Actuator Integrated Low-Profile Robotic Origami
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
4937
4944
.10.1109/IROS.2013.6697069
14.
Benbernou
,
N.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Ovadya
,
A.
,
2009
, “
A Universal Crease Pattern for Folding Orthogonal Shapes
,” arXiv:0909.5388.
15.
Paik
,
J.
,
Hawkes
,
E.
, and
Wood
,
R.
,
2010
, “
A Novel Low-Profile Shape Memory Alloy Torsional Actuator
,”
Smart Mater. Struct.
,
19
(
12
), p.
125014
.10.1088/0964-1726/19/12/125014
16.
Torres-Jara
,
E.
,
Gilpin
,
K.
,
Karges
,
J.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2010
, “
Compliant Modular Shape Memory Alloy Actuators
,”
IEEE Rob. Autom. Mag.
,
17
(
4
), pp.
78
87
.10.1109/MRA.2010.938845
17.
Paik
,
J. K.
, and
Wood
,
R. J.
,
2012
, “
A Bidirectional Shape Memory Alloy Folding Actuator
,”
Smart Mater. Struct.
,
21
(
6
), p.
065013
.10.1088/0964-1726/21/6/065013
18.
Nishida
,
M.
,
Tanaka
,
K.
, and
Wang
,
H. O.
,
2006
, “
Development and Control of a Micro Biped Walking Robot Using Shape Memory Alloys
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
1604
1609
.10.1109/ROBOT.2006.1641936
19.
Matsumoto
,
Y.
,
Nakanishi
,
H.
, and
Hirai
,
S.
,
2008
, “
Rolling Locomotion of a Deformable Soft Robot With Built-In Power Source
,”
11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
(
CLAWAR 2008
), Coimbra, Portugal, Sept. 8–10, pp.
365
372
.10.1142/9789812835772_0044
20.
Mingyen
,
H.
,
McMillan
,
A. B.
,
Simard
,
J. M.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2012
, “
Toward a Meso-Scale SMA-Actuated MRI-Compatible Neurosurgical Robot
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
213
222
.10.1109/TRO.2011.2165371
21.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
22.
Paik
,
J. K.
,
Kramer
,
R. K.
, and
Wood
,
R. J.
,
2011
, “
Stretchable Circuits and Sensors for Robotic Origami
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
414
420
.10.1109/IROS.2011.6094746
23.
Kramer
,
R. K.
,
Majidi
,
C.
,
Sahai
,
R.
, and
Wood
,
R. J.
,
2011
, “
Soft Curvature Sensors for Joint Angle Proprioception
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
1919
1926
.10.1109/IROS.2011.6094701
24.
Rosset
,
S.
, and
Shea
,
H.
,
2013
, “
Flexible and Stretchable Electrodes for Dielectric Elastomer Actuators
,”
Appl. Phys. A
,
110
(
2
), pp.
281
307
.10.1007/s00339-012-7402-8
25.
Avalon
,
T. D.
,
Fuller
,
R.
,
Gentile
,
C. T.
,
Goodman
,
S.
,
Hall
,
T.
, and
Wallace
,
M.
,
1992
, “
Angular Displacement Sensors
,” U.S. Patent No. 5,086,785.
26.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
RoACH: An Autonomous 2.4g Crawling Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
26
33
.10.1109/IROS.2008.4651149
27.
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2009
, “
Omegabot: Biomimetic Inchworm Robot Using SMA Coil Actuator and Smart Composite Microstructures (SCM)
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guilin, China, Dec. 19–23, pp.
1154
1159
.10.1109/ROBIO.2009.5420752
28.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.10.1115/1.2885509
29.
Lu
,
Z. K.
, and
Weng
,
G. J.
,
1998
, “
A Self-Consistent Model for the Stress-Strain Behavior of Shape-Memory Alloy Polycrystals
,”
Acta Mater.
,
46
(
15
), pp.
5423
5433
.10.1016/S1359-6454(98)00203-1
30.
Johnson Matthey Medical, 2015, “
Nitinol Technical Properties
,” Johnson Matthey Inc., West Chester, PA, http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html
You do not currently have access to this content.