This paper presents a minimal invariant coordinate-free description of rigid body motion trajectories. Based on a motion model for the instantaneous screw axis, a time-based coordinate-free description consisting of six scalar functions of time is defined. Analytical formulas are presented to obtain these functions from the pose or twist coordinates of a motion trajectory. The time-based functions are then stripped from their temporal information yielding five independent geometric functions together with a scalar motion profile. The geometric functions are shown to be invariant with respect to time scale, linear and angular scale, motion profile, reference frame, and reference point on the rigid body used to express the translational components of the motion. An algorithm is given to reconstruct a coordinate representation of a motion trajectory from its coordinate-free description. A numerical example illustrates the validity of the approach.

1.
Black
,
M.
, and
Jepson
,
A.
, 1998, “
A Probabilistic Framework for Matching Temporal Trajectories: Condensation-Based Recognition of Gestures and Expressions
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Springer-Verlag
,
Freiburg, Germany
, pp.
900
924
.
2.
Rao
,
C.
,
Yilmaz
,
A.
, and
Shah
,
M.
, 2002, “
View-Invariant Representation and Recognition of Actions
,”
Int. J. Comput. Vis.
0920-5691,
50
(
2
), pp.
203
226
.
3.
Psarrou
,
A.
,
Gong
,
S.
, and
Walter
,
M.
, 2002, “
Recognition of Human Gestures and Behaviour Based on Motion Trajectories
,”
Image Vis. Comput.
0262-8856,
20
, pp.
349
358
.
4.
Yamada
,
Y.
,
Umetani
,
Y.
,
Daitoh
,
H.
, and
Sakai
,
T.
, 1999, “
Construction of a Human/Robot Coexistence System Based on a Model of Human Will—Intention and Desire
,”
International Conference on Robotics and Automation
, Detroit, MI, pp.
2861
2867
.
5.
Aleotti
,
J.
, and
Caselli
,
S.
, 2005, “
Trajectory Clustering and Stochastic Approximation for Robot Programming by Demonstration
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, Canada, pp.
1029
1034
.
6.
Friedrich
,
H.
,
Münch
,
S.
, and
Dillmann
,
R.
, 1996, “
Robot Programming by Demonstration (RPD): Supporting the Induction by Human Interaction
,”
Mach. Learn.
0885-6125,
23
, pp.
163
189
.
7.
Frenet
,
F.
, 1847, “
Sur les courbes à couble courbure
,” Ph.D. thesis, Toulouse, France.
8.
Wu
,
S.
, and
Li
,
Y.
, 2008, “
On Signature Invariants for Effective Motion Trajectory Recognition
,”
Int. J. Robot. Res.
0278-3649,
27
(
8
), pp.
895
917
.
9.
Chasles
,
M.
, 1830, “
Note sur les propriétés générales du système de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou in infiniment petit d’un corps solide libre
,”
Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chimiques
,
14
, pp.
321
326
.
10.
Ceccarelli
,
M.
, 1995, “
Screw Axis Defined by Giulio Mozzi in 1763
,”
Ninth World Congress IFToMM
, Milano, Italy, pp.
3187
3190
.
11.
Mozzi
,
G.
, 1763, “
Discorso Matematico sopra il Rotamento Momentaneo dei Corpi
,” Stamperia del Donato Campo, Napoli.
12.
Skreiner
,
M.
, 1966, “
A Study of the Geometry and the Kinematics of Instantaneous Spatial Motion
,”
J. Mech.
0022-2569,
1
, pp.
115
143
.
13.
Veldkamp
,
G. R.
, 1969, “
Acceleration Axes and Acceleration Distribution in Spatial Motion
,”
ASME J. Eng. Ind.
0022-0817,
91
, pp.
147
151
.
14.
Skreiner
,
M.
, 1969, “
Discussion on “Acceleration Axes and Acceleration Distribution in Spatial Motion”
,”
ASME J. Eng. Ind.
0022-0817,
13
, pp.
150
151
.
15.
Bokelberg
,
E. H.
,
Hunt
,
K. H.
, and
Ridley
,
P. R.
, 1992, “
Spatial Motion—I. Points of Inflection and the Differential Geometry of Screws
,”
Mech. Mach. Theory
0094-114X,
27
(
1
), pp.
1
15
.
16.
Phillips
,
J.
, and
Hunt
,
K.
, 1964, “
On the Theorem of Three Axes in the Spatial Motion of Three Bodies
,”
J. Appl. Sci.
1812-5654,
15
(
4
), pp.
267
287
.
17.
Angeles
,
J.
, 1986, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitesimally-Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
39
43
.
18.
Angeles
,
J.
, 1987, “
Computation of Rigid-Body Angular Acceleration From Point-Acceleration Measurements
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434, pp.
124
127
.
19.
Angeles
,
J.
, 1988,
Rational Kinematics
,
Springer
,
New York
.
20.
Sommer
,
H. J.
, III
, 1992, “
Determination of First and Second Order Instant Screw Parameters From Landmark Trajectories
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
274
282
.
21.
Page
,
A.
, 2009, “
Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitesimal Displacements From Point Coordinates
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
031005
.
22.
Fenton
,
R. G.
, and
Willgoss
,
R. A.
, 1990, “
Comparison of Methods for Determining Screw Parameters of Infinitesimal Rigid Body Motion From Position and Velocity Data
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
711
716
.
23.
Veldkamp
,
G. R.
, 1967, “
Canonical Systems and Instantaneous Invariants in Spatial Kinematics
,”
J. Mech.
0022-2569,
2
, pp.
329
333
.
24.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
(
Series in Applied Mathematics and Mechanics
), Vol.
24
,
North-Holland
,
Amsterdam, the Netherlands
.
25.
Roth
,
B.
, 2005, “
Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial Motions
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
227
231
.
26.
Kirson
,
Y.
, and
Yang
,
A.
, 1978, “
Instantaneous Invariants of Three-Dimensional Kinematics
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
409
414
.
27.
McCarthy
,
J.
, and
Roth
,
B.
, 1982, “
Instantaneous Properties of trajectories Generated by Planar, Spherical, and Spatial Rigid Body Motions
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
39
51
.
28.
McCarthy
,
J.
, and
Ravani
,
B.
, 1986, “
Differential Kinematics of Spherical and Spatial Motions Using Kinematic Mapping
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
15
22
.
29.
Lee
,
C.
,
Yang
,
A.
, and
Ravani
,
B.
, 1993, “
Coordinate System Independent Form of Instantaneous Invariants in Spatial Kinematics
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
946
952
.
30.
Stachel
,
H.
, 2000, “
Instantaneous Spatial Kinematics and the Invariants of the Axodes
,”
Proceedings of the Ball 2000 Symposium
,
Cambridge University Press
,
London
, pp.
1
14
.
31.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936,
23
, pp.
215
221
.
32.
Skreiner
,
M.
, 1967, “
On the Points of Inflection in General Spatial Motion
,”
J. Mech.
0022-2569,
2
, pp.
429
433
.
33.
Paul
,
R. P.
, 1981,
Robot Manipulators: Mathematics, Programming, and Control
,
MIT
,
Cambridge, MA
.
You do not currently have access to this content.