Abstract

In manufacturing industry, computer numerical control (CNC) machines are often preferred over industrial serial robots (ISR) for machining tasks. Indeed, CNC machines offer high positioning accuracy, which leads to slight dimensional deviation on the final product. However, these machines have a restricted workspace generating limitations in the machining work. Conversely, ISR are typically characterized by a larger workspace. ISR have already shown satisfactory performance in tasks like polishing, grinding, and deburring. This paper proposes a kinematic redundant robot composed of a novel two degrees-of-freedom mechanism with a closed kinematic chain. After describing a task-priority inverse kinematic control framework used for joint trajectory planning exploiting the robot kinematic redundancy, the paper analyses the kinetostatic performance of this robot depending on the considered control tasks. Moreover, two kinetostatic tasks are introduced and employed to improve the robot performance. Simulation results show how the robot better performs when the optimization tasks are active.

References

1.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
,
2004
, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
297
310
.
2.
Ji
,
W.
, and
Wang
,
L.
,
2019
, “
Industrial Robotic Machining: A Review
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1239
1255
.
3.
Chen
,
Y.
, and
Dong
,
F.
,
2013
, “
Robot Machining: Recent Development and Future Research Issues
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9
), pp.
1489
1497
.
4.
Caro
,
S.
,
Dumas
,
C.
,
Garnier
,
S.
, and
Furet
,
B.
,
2013
, “
Workpiece Placement Optimization for Machining Operations With a KUKA KR270-2 Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
2921
2926
.
5.
Takeuchi
,
Y.
,
Ge
,
D.
, and
Asakawa
,
N.
,
1993
, “
Automated Polishing Process With a Human-Like Dexterous Robot
,”
[1993] Proceedings of the IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, pp.
950
956
.
6.
Liu
,
L.
,
Ulrich
,
B.
, and
Elbestawi
,
M. A.
,
1990
, “
Robotic Grinding Force Regulation: Design, Implementation and Benefits
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
, pp.
258
265
.
7.
Pires
,
J. N.
,
Ramming
,
J.
,
Rauch
,
S.
, and
Araújo
,
R.
,
2002
, “
Force/Torque Sensing Applied to Industrial Robotic Deburring
,”
Sens. Rev.
,
22
(
3
), pp.
232
241
.
8.
Dumas
,
C.
,
Caro
,
S.
,
Garnier
,
S.
, and
Furet
,
B.
,
2011
, “
Joint Stiffness Identification of Six-Revolute Industrial Serial Robots
,”
Rob. Comput.-Integr. Manuf.
,
27
(
4
), pp.
881
888
.
9.
Dumas
,
C.
,
Caro
,
S.
,
Cherif
,
M.
,
Garnier
,
S.
, and
Furet
,
B.
,
2012
, “
Joint Stiffness Identification of Industrial Serial Robots
,”
Robotica
,
30
(
4
), pp.
649
659
.
10.
Brunete
,
A.
,
Gambao
,
E.
,
Koskinen
,
J.
,
Heikkilä
,
T.
,
Kaldestad
,
K. B.
,
Tyapin
,
I.
, and
Hovland
,
G.
,
2018
, “
Hard Material Small-Batch Industrial Machining Robot
,”
Rob. Comput.-Integr. Manuf.
,
54
, pp.
185
199
.
11.
Gonul
,
B.
,
Sapmaz
,
O. F.
, and
Tunc
,
L. T.
,
2019
, “
Improved Stable Conditions in Robotic Milling by Kinematic Redundancy
,”
Procedia CIRP
,
82
, pp.
485
490
.
12.
Menon
,
M. S.
,
Ravi
,
V.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041010
.
13.
Seereeram
,
S.
, and
Wen
,
J. T.
,
1995
, “
A Global Approach to Path Planning for Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
152
160
.
14.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intel. Rob. Syst.
,
3
(
3
), pp.
201
212
.
15.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1992
, “
A Geometric Approach to Hyper-Redundant Manipulator Obstacle Avoidance
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
580
585
.
16.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1995
, “
Kinematically Optimal Hyper-Redundant Manipulator Configurations
,”
IEEE Trans. Rob. Autom.
,
11
(
6
), pp.
794
806
.
17.
Shammas
,
E.
,
Wolf
,
A.
,
Brown
,
H. B.
, and
Choset
,
H.
,
2003
, “
New Joint Design for Three-Dimensional Hyper Redundant Robots
,”
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
,
Las Vegas, NV
,
Oct. 27–31
, pp.
3594
3599
.
18.
Dufau
,
L.
,
2021, March 23
, “
Articulated Robot Arm
,” U.S. Patent No. 10,953,554, https://uspto.report/patent/grant/10,953,554, Accessed January 23, 2023.
19.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1991
, “
Hyper-Redundant Robot Mechanisms and Their Applications
,”
Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91
,
Osaka, Japan
,
Nov. 3–5
,
vol. 1, pp. 185–190
.
20.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification and Control of Robots
,
Butterworth-Heinemann
,
London, UK
.
21.
Reiter
,
A.
,
Müller
,
A.
, and
Gattringer
,
H.
,
2016
, “
Inverse Kinematics in Minimum-Time Trajectory Planning for Kinematically Redundant Manipulators
,”
IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
,
Oct. 23–26
, pp.
6873
6878
.
22.
Dharmawan
,
A. G.
,
Foong
,
S.
, and
Soh
,
G. S.
,
2018
, “
Task-Constrained Optimal Motion Planning of Redundant Robots Via Sequential Expanded Lagrangian Homotopy
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031010
.
23.
Marcos
,
M. d. G.
,
Machado
,
J.
, and
Azevedo-Perdicoúlis
,
T.-P.
,
2010
, “
An Evolutionary Approach for the Motion Planning of Redundant and Hyper-Redundant Manipulators
,”
Nonlinear Dyn.
,
60
(
1
), pp.
115
129
.
24.
Toshani
,
H.
, and
Farrokhi
,
M.
,
2014
, “
Real-Time Inverse Kinematics of Redundant Manipulators Using Neural Networks and Quadratic Programming: A Lyapunov-Based Approach
,”
Rob. Auton. Syst.
,
62
(
6
), pp.
766
781
.
25.
Escande
,
A.
,
Mansard
,
N.
, and
Wieber
,
P.-B.
,
2014
, “
Hierarchical Quadratic Programming: Fast Online Humanoid-Robot Motion Generation
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
1006
1028
.
26.
Di Lillo
,
P.
,
Chiaverini
,
S.
, and
Antonelli
,
G.
,
2019
, “
Handling Robot Constraints Within a Set-Based Multi-Task Priority Inverse Kinematics Framework
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
7477
7483
.
27.
Flacco
,
F.
,
De Luca
,
A.
, and
Khatib
,
O.
,
2012
, “
Prioritized Multi-Task Motion Control of Redundant Robots Under Hard Joint Constraints
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
3970
3977
.
28.
Simetti
,
E.
, and
Casalino
,
G.
,
2016
, “
A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control
,”
J. Intel. Rob. Syst.
,
84
(
1–4
), pp.
877
902
.
29.
Ginnante
,
A.
,
Leborne
,
F.
,
Caro
,
S.
,
Simetti
,
E.
, and
Casalino
,
G.
,
2021
, “
Design and Kinematic Analysis of a Novel 2-DOF Closed-Loop Mechanism for the Actuation of Machining Robots
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8A: 45th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
.
30.
Simetti
,
E.
,
Casalino
,
G.
,
Aicardi
,
M.
, and
Wanderlingh
,
F.
,
2018
, “
Task Priority Control of Underwater Intervention Systems: Theory and Applications
,”
Ocean Eng.
,
164
, pp.
40
54
.
31.
Simetti
,
E.
,
Casalino
,
G.
,
Aicardi
,
M.
, and
Wanderlingh
,
F.
,
2019
, “
A Task Priority Approach to Cooperative Mobile Manipulation: Theory and Experiments
,”
Rob. Auton. Syst.
,
122
, p.
103287
.
32.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Hyper-Redundant Manipulator
,”
IEEE Rob. Autom. Mag.
,
1
(
4
), pp.
22
29
.
33.
Carricato
,
M.
,
2009
, “
Decoupled and Homokinetic Transmission of Rotational Motion Via Constant-Velocity Joints in Closed-Chain Orientational Manipulators
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041008
.
34.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2002
, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
Proceeding of the Third Chemnitz Parallel Kinematics Seminar, Parallel Kinematic Machines International Conference
,
Chemnitz, Germany
,
Apr. 23–25
, pp.
171
188
.
35.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
36.
Zargarbashi
,
S.
,
Khan
,
W.
, and
Angeles
,
J.
,
2012
, “
Posture Optimization in Robot-Assisted Machining Operations
,”
Mech. Mach. Theory
,
51
, pp.
74
86
.
37.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
38.
Khan
,
W. A.
, and
Angeles
,
J.
,
2005
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
39.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
40.
Rakotomanga
,
N.
,
Chablat
,
D.
, and
Caro
,
S.
,
2008
, “Kinetostatic Performance ofa Planar Parallel Mechanism with Variable Actuation,”
Advances in Robot Kinematics: Analysis and Design
,
Springer
,
Dordrecht, Netherlands
, pp.
311
320
.
41.
Golub
,
G. H.
, and
Pereyra
,
V.
,
1973
, “
The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate
,”
SIAM J. Numer. Anal.
,
10
(
2
), pp.
413
432
.
You do not currently have access to this content.