Abstract

This paper presents a novel walking hybrid-kinematics robot having three degrees-of-freedom for on-structure machining of large structures. A symmetric 3PRRR parallel mechanism having maximally regular properties is used to provide three-dimensional translational manipulation. Three attachment pads are connected to the base of the parallel mechanism through passive spherical joints, whereas multiple attachment pads are connected to the moving platform of the parallel mechanism. A machining task is performed by using a retractable tool holder attached to the parallel mechanism's moving platform. Two walking patterns, namely rotational and translational walking patterns, are defined for the robot. The kinematics of the manipulation and walking motions was derived and simulated. Several schemes to perform multi-step walking motions were also discussed. Subsequently, using an energy-based approach with the Stribeck friction model, the robot's dynamics was modeled and experimentally verified. Finally, an implementation of the robot to perform an on-structure machining task is discussed.

References

1.
Axinte
,
D. A.
,
Allen
,
J. M.
,
Anderson
,
R.
,
Dane
,
I.
,
Uriarte
,
L.
, and
Olara
,
A.
,
2011
, “
Free-Leg Hexapod: A Novel Approach of Using Parallel Kinematic Platforms for Developing Miniature Machine Tools for Special Purpose Operations
,”
CIRP Ann.
,
60
(
1
), pp.
395
398
.
2.
Russo
,
M.
, and
Dong
,
X.
,
2020
, “
A Calibration Procedure for Reconfigurable Gough-Stewart Manipulators
,”
Mech. Mach. Theory
,
152
, p.
103920
.
3.
Rushworth
,
A.
,
Cobos-Guzman
,
S.
,
Axinte
,
D. A.
, and
Raffles
,
M.
,
2015
, “
Pre-Gait Analysis Using Optimal Parameters for a Walking Machine Tool Based on a Free-Leg Hexapod Structure
,”
Rob. Auton. Syst.
,
70
, pp.
36
51
.
4.
Olarra
,
A.
,
Axinte
,
D. A.
,
Uriarte
,
L.
, and
Bueno
,
R.
,
2017
, “
Machining With the WalkingHex: A Walking Parallel Kinematic Machine Tool for In Situ Operations
,”
CIRP Ann.
,
66
(
1
), pp.
361
364
.
5.
Camacho-Arreguin
,
J.
,
Wang
,
M.
,
Dong
,
X.
, and
Axinte
,
D
,
2020
, “
A Novel Class of Reconfigurable Parallel Kinematic Manipulators: Concepts and Fourier-Based Singularity Analysis
,”
Mech. Mach. Theory
,
153
, p.
103993
.
6.
Pan
,
Y.
, and
Gao
,
F.
,
2014
, “
A New Six-Parallel-Legged Walking Robot for Drilling Holes on the Fuselage
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
4
), pp.
753
764
.
7.
Pan
,
Y.
, and
Gao
,
F.
,
2017
, “
Position Model Computational Complexity of Walking Robot With Different Parallel Leg Mechanism Topology Patterns
,”
Mech. Mach. Theory
,
107
, pp.
324
337
.
8.
Chen
,
J.
,
Xie
,
F.
,
Liu
,
X.
, and
Bi
,
W.
,
2021
, “
Stiffness Evaluation of an Adsorption Robot for Large-Scale Structural Parts Processing
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040902
.
9.
Donato
,
E.
,
Picardi
,
G.
, and
Calisti
,
M.
,
2021
, “Statics Optimization of a Hexapedal Robot Modelled as a Stewart Platform,”
Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science()
, Vol.
13054
,
C.
Fox
,
J.
Gao
,
A.
Ghalamzan Esfahani
,
M.
Saaj
,
M.
Hanheide
, and
S.
Parsons
, eds.,
Springer
,
Cham
, pp.
370
380
.
10.
Wang
,
M. F.
,
Ceccarelli
,
M.
, and
Carbone
,
G.
,
2016
, “
A Feasibility Study on the Design and Walking Operation of a Biped Locomotor via Dynamic Simulation
,”
Front. Mech. Eng.
,
11
(
2
), pp.
144
158
.
11.
Russo
,
M.
, and
Ceccarelli
,
M.
,
2018
, “Kinematic Design of a Tripod Parallel Mechanism for Robotic Legs,”
Mechanisms, Transmissions and Applications
,
Springer International Publishing
,
Trabzon, Turkey
, pp.
121
130
.
12.
Russo
,
M.
,
Herrero
,
S.
,
Altuzarra
,
O.
, and
Ceccarelli
,
M.
,
2018
, “
Kinematic Analysis and Multi-Objective Optimization of a 3-UPR Parallel Mechanism for a Robotic Leg
,”
Mech. Mach. Theory
,
120
, pp.
192
202
.
13.
Giewont
,
S.
, and
Sahin
,
F.
,
2017
, “
Delta-Quad: An Omnidirectional Quadruped Implementation Using Parallel Jointed Leg Architecture
,”
Proceedings of the 12th System of Systems Engineering Conference (SoSE)
,
Waikoloa, HI
,
June 18–21
, pp.
1
6
.
14.
Li
,
L.
,
Fang
,
Y.
,
Guo
,
S.
,
Qu
,
H.
, and
Wang
,
L.
,
2020
, “
Type Synthesis of a Class of Novel 3-DOF Single-Loop Parallel leg Mechanisms for Walking Robots
,”
Mech. Mach. Theory
,
145
, p.
103695
.
15.
Lin
,
R.
,
Guo
,
W.
, and
Li
,
M.
,
2018
, “
Novel Design of Legged Mobile Landers With Decoupled Landing and Walking Functions Containing a Rhombus Joint
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061017
.
16.
Lin
,
R.
, and
Guo
,
W.
,
2020
, “
Creative Design of Legged Mobile Landers With Multi-Loop Chains Based on Truss-Mechanism Transformation Method
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011013
.
17.
Yang
,
H.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Baradat
,
C.
,
2011
, “
Locomotion Approach of REMORA: a REonfigurable Mobile Robot for Manufacturing Applications
,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, p.
5067
5072
.
18.
Figliolini
,
G.
,
Rea
,
P.
, and
Conte
,
M.
,
2010
, “Mechanical Design of a Novel Biped Climbing and Walking Robot,”
ROMANSY 18 Robot Design, Dynamics and Control, CISM International Centre for Mechanical Sciences
, Vol.
524
,
V.
Parenti Castelli
, and
W.
Schiehlen
, eds.,
Springer
,
Vienna
, pp.
199
206
.
19.
Jian-she
,
G.
,
Ming-Xiang
,
L.
,
Yu-Yin
,
L.
, and
Bao-Tang
,
W.
,
2017
, “
Singularity Analysis and Dimensional Optimization on a Novel Serial-Parallel Leg Mechanism
,”
Procedia Eng.
,
174
, pp.
45
52
. 13th Global Congress on Manufacturing and Management, GCMM 2016.
20.
Silva
,
M. F.
,
Machado
,
J. A. T.
, and
Tar
,
J. K.
,
2008
, “
A Survey of Technologies for Climbing Robots Adhesion to Surfaces
,”
Proceedings of the IEEE International Conference on Computational Cybernetics
,
Stara Lesna, Slovakia
,
Nov. 27–29
pp.
127
132
.
21.
Schmidt
,
D.
, and
Berns
,
K.
,
2013
, “
Climbing Robots for Maintenance and Inspections of Vertical Structures—A Survey of Design Aspects and Technologies
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1288
1305
.
22.
Brusell
,
A.
,
Andrikopoulos
,
G.
, and
Nikolakopoulos
,
G.
,
2016
, “
A Survey on Pneumatic Wall-Climbing Robots for Inspection
,”
Proceedings of the 24th Mediterranean Conference on Control and Automation (MED)
,
Athens, Greece
,
June 21–24
.
23.
Wong
,
E. T. P.
,
1998
, “
Use of a Delta Robot as a Walking Machine
,”
Mechanical Engineering Department, University of Canterbury
,
Christchurch, New Zealand
.
24.
Dunlop
,
G. R.
,
2003
, “Foot Design for a Large Walking Delta Robot,”
Experimental Robotics VIII. Springer Tracts in Advanced Robotics
, Vol.
5
,
B.
Siciliano
, and
P.
Dario
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
602
611
.
25.
Gosselin
,
C. M.
,
Kong
,
X.
,
Foucault
,
S.
, and
Bonev
,
I.
,
2004
, “
A Fully-Decoupled 3-d of Translational Parallel Mechanism
,”
Parallel Kinematic Machines in Research and Practice, The 4th Chemnitz Parallel Kinematics Seminar
,
Chemnitz, Germany
,
Apr. 20–21
, pp.
595
610
.
26.
Gogu
,
G.
,
2009
,
Structural Synthesis of Parallel Robots, Part 2: Translational Topologies With Two and Three Degrees of Freedom
, 1st ed.,
Springer
,
Netherlands
.
27.
Gosselin
,
C. M.
,
2009
, “
Compact Dynamic Models for the Tripteron and Quadrupteron Parallel Manipulators
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
223
(
1
), pp.
1
12
.
28.
Stribeck
,
R.
, and
Schröter
,
M.
,
1903
,
Die Wesentlichen Eigenschaften der Gleit-und Rollenlager: Untersuchung Einer Tandem-Verbundmaschine von 1000 PS
,
Springer
,
Berlin, Germany
.
29.
Rosyid
,
A.
, and
El-Khasawneh
,
B.
,
2020
, “
Identification of the Dynamic Parameters of a Parallel Kinematics Mechanism With Prismatic Joints by Considering Varying Friction
,”
Appl. Sci.
,
10
(
14
), p.
4820
.
30.
Haug
,
E. J.
, and
Yen
,
J.
,
1990
, “Generalized Coordinate Partitioning Methods for Numerical Integration of Differential-Algebraic Equations of Dynamics,”
Real-Time Integration Methods for Mechanical System Simulation, NATO ASI Series
, Vol.
F69
,
E. J.
Haug
, and
R. C.
Deyo
, eds.,
Springer
,
Berlin
, pp.
97
114
.
You do not currently have access to this content.