Abstract

The primary contribution of the paper is a proposal of a method to minimize the angular positioning error in the process of transferring cuboidal objects between oblique friction force fields generated by two conveyors located on parallel planes. The research included infeed conveyors with two variants of inputs: angular and straight. It was assumed that the object, while moving between oblique conveyors at different heights, performs a 3D movement. The object is treated as a rigid body with a soft base, edges, and corners that can be subjected to significant local deformations. A modified nonlinear Kelvin model was used to describe the normal reaction forces at the contact points of the object with the bearing surfaces of the conveyors, and the modified static Bengisu–Akay friction model represents the tangential forces. Research shows that the use of a slight offset between the bearing surfaces of the conveyors and the highest possible proportion between the motion velocities of the infeed and outfeed conveyors have positive effect on improving the angular precision of the positioned objects. This conclusion applies to both variants of the infeed conveyor inputs. The results of the research have practical application in the design of high-performance conveyor transport systems, used in the processes of picking cuboidal objects, requiring a strictly defined angular orientation.

References

1.
Piątkowski
,
T.
,
2009
, “
Model and Analysis of the Process of Unit-Load Stream Sorting by Manipulator With Torsional Disks
,”
J. Theor. Appl. Mech.
,
47
(
4
), pp.
871
896
.
2.
Piatkowski
,
T.
,
Wolski
,
M.
, and
Dylag
,
K.
,
2019
, “
Angular Positioning of the Objects by the System of Two Oblique Friction Force Fields
,”
Mech. Mach. Theory
,
140
(
10
), pp.
668
685
.
3.
Yi
,
J. S.
,
Yumbla
,
F.
,
Auh
,
E.
,
Abayebas
,
M.
,
Luong
,
T. A.
, and
Moon
,
H.
,
2021
, “
Passive Aligning of Ribbon Cable in Sliding Surface Gripper for Assembly Task
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
025001
.
4.
Kennedy
M. III
,
Thakur
,
D.
,
Hsieh
,
M. A.
,
Bhattacharya
,
S.
, and
Kumar
,
V.
,
2018
, “
Optimal Paths for Polygonal Robots in SE(2)
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021005
.
5.
Cloutier
,
A.
, and
Yang
,
J.
,
2018
, “
Grasping Force Optimization Approaches for Anthropomorphic Hands
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011004
.
6.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-Hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
.
7.
She
,
Y.
,
Su
,
H. J.
,
Meng
,
D.
, and
Lai
,
C.
,
2020
, “
Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human-Robot Interaction
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011006
.
8.
Mason
,
M. T.
,
1999
, “
Progress in Nonprehensile Manipulation
,”
Int. J. Rob. Res.
,
18
(11), pp.
1129
1141
.
9.
Ruggiero
,
F.
,
Lippiello
,
V.
, and
Sicilian
,
B.
,
2018
, “
Nonprehensile Dynamic Manipulation: A Survey
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
1711
1718
.
10.
Berretty
,
R. P.
,
Goldberg
,
K. Y.
,
Overmars
,
M. H.
, and
Stappen
,
A. F.
,
1998
, “
Computing Fence Designs for Orienting Parts
,”
Comput. Geom.
,
10
(
4
), pp.
249
262
.
11.
Vose
,
T. H.
,
Umbanhowar
,
P.
, and
Lynch
,
K. M.
,
2012
, “
Manipulation With Vibratory Velocity Fields on a Tilted Plate
,”
2012 IEEE Conference on Automation Science and Engineering
,
Seoul, South Korea
,
Aug. 20–24
, Vol. 1, pp.
942
949
.
12.
Xie
,
J.
, and
Chakraborty
,
N.
,
2021
, “
Modeling and Prediction of Rigid Body Motion With Planar Non-Convex Contact
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041001
.
13.
Passarini
,
C.
,
Zanotto
,
D.
, and
Boschetti
,
G.
,
2019
, “
Dynamic Trajectory Planning for Failure Recovery in Cable-Suspended Camera Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021001
.
14.
Berard
,
S.
,
Nguyen
,
B.
,
Anderson
,
K.
, and
Trinkle
,
J. C.
,
2010
, “
Sources of Error in a Simulation of Rigid Parts on a Vibrating Rigid Plate
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
14
.
15.
Mitani
,
A.
,
Sugano
,
N.
, and
Hirai
,
S.
,
2006
, “
Microparts Feeding by a Saw-Tooth Surface
,”
IEEE/ASME Trans. Mechatron.
,
11
(
6
), pp.
671
681
.
16.
Böhringer
,
K. F.
,
Donald
,
B. R.
, and
Kavraki
,
L. E.
,
2000
, “
Part Orientation With One or Two Stable Equilibria Using Programmable Force Fields
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
157
170
.
17.
Murphey
,
T.
, and
Burdick
,
J.
,
2004
, “
Feedback Control for Distributed Manipu-Lation Systems That Involve Mechanical Contacts
,”
Int. J. Rob. Res.
,
23
(
7
), pp.
763
781
.
18.
Piatkowski
,
T.
,
2011
, “
Analysis of Translational Positioning of Unit Loads by Directionally-Oriented Friction Force Fields
,”
Mech. Mach. Theory
,
46
(
2
), pp.
201
217
.
19.
Piątkowski
,
T.
, and
Wolski
,
M.
,
2021
, “
Model of Positioning Objects by the System of Oblique Friction Force Fields on Horizontal and Vertically Offset Planes
,”
Mech. Mach. Theory
,
156
(
2
), p.
24
.
20.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
21.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
(
7
), pp.
99
121
.
22.
Skrinjar
,
L.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2018
, “
A Review of Continuous Contact-Force Models in Multibody Dynamics
,”
Int. J. Mech. Sci.
,
145
(
9
), pp.
171
187
.
23.
Piatkowski
,
T.
, and
Sempruch
,
J.
,
2009
, “
Model of Inelastic Impact of Unit Loads
,”
Packag. Technol. Sci.
,
22
(
1
), pp.
39
51
.
24.
Piątkowski
,
T.
,
Wolski
,
M.
,
Tomaszewski
,
T.
,
Strzelecki
,
P.
, and
Sempruch
,
J.
,
2022
, “
Analysis of the Positioning Process of Objects on an Oblique Plane With Barriers
,”
Mech. Mach. Theory
,
168
(
2
), p.
28
.
25.
Bengisu
,
M. T.
, and
Akay
,
A.
,
1994
, “
Stability of Friction-Induced Vibrations in Multi-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
171
(
4
), pp.
557
570
.
26.
Marques
,
F.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2016
, “
On the Frictional Contacts in Multibody System Dynamics
,”
Multibody Dyn. Comput. Methods Appl. Sci.
,
42
, pp.
67
91
.
27.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Systems
,”
J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.
28.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2019
, “
Modeling and Analysis of Friction Including Rolling Effects in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
45
(
2
), pp.
223
244
.
29.
Chen
,
S.
, and
Zhang
,
Z.
,
2020
, “
Modification of Friction for Straightforward Implementation of Friction Law
,”
Multibody Syst. Dyn.
,
48
(
2
), pp.
239
257
.
You do not currently have access to this content.