Abstract

In this paper, a new reconfigurable 6R linkage is obtained by combining two identical equilateral Bennett linkages arranged in a plane-symmetric manner, and a detailed kinematic analysis is conducted which shows that there are six distinct motion modes and three topological structures of the derived mechanism without changing the types of kinematic joints. Explicit relationships among the kinematic variables are obtained with D–H method and various modes are discussed in detail. Bifurcation points are derived and the reconfigurations are analyzed. The result shows that the mechanism has six motion modes which contain a special case of a plane-symmetric 6R mode and a special case of a two-fold symmetric 6R mode, an X-shaped motion mode, and two V-shaped motion modes. A physical prototype is fabricated to verify the derivation and it shows that the mechanism can transform among all the motion modes without the need of reassembling.

References

1.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
2.
Sarrus
,
P. F.
,
1853
, “
Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires, et reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
3.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
4.
Myard
,
F. E.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
5.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
663
.
6.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
7.
Bennett
,
G. T.
,
1905
, “
The Parallel Motion of Sarrus and Some Allied Mechanisms
,”
Philos. Mag.
,
9
, pp.
803
810
.
8.
Bricard
,
R.
,
1927
,
Leçons de cinématique, Tome II Cinématique Appliquée
,
Gauthier-Villars
,
Paris
.
9.
Chai
,
W. H.
, and
Chen
,
Y.
,
2010
, “
The Line-Symmetric Octahedral Bricard Linkage and Its Structural Closure
,”
Mech. Mach. Theory
,
45
(
5
), pp.
772
779
.
10.
Feng
,
H. J.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
11.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
12.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
13.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
Proceedings of the 7th World Congress on the Theory of Machines and Mechanisms
,
Seville, Spain
,
Sept. 17–22
, pp.
193
198
.
14.
Chen
,
Y.
,
2003
,
Design of Structural Mechanisms
,
University of Oxford
,
London
.
15.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
16.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1998
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Proceedings of ASME 1998 Design Engineering Technical Conferences, DETC 1998
,
Atlanta, GA
,
Sept. 13–16
.
17.
Kong
,
X. W.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
18.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
.
19.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
20.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
21.
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
22.
Chai
,
X. H.
, and
Dai
,
J. S.
,
2019
, “
Three Novel Symmetric Waldron-Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization
,”
ASME J. Mech. Robot.
,
11
(
5
), p.
051011
.
23.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
24.
Wang
,
R. Q.
,
Song
,
Y. Q.
, and
Dai
,
J. S.
,
2021
, “
Reconfigurability of the Origami-Inspired Integrated 8R Kinematotropic Metamorphic Mechanism and Its Evolved 6R and 4R Mechanisms
,”
Mech. Mach. Theory
,
161
, p.
104245
.
25.
Liu
,
R.
,
Li
,
R.
, and
Yao
,
Y.-A.
,
2020
, “
Reconfigurable Deployable Bricard-Like Mechanism With Angulated Elements
,”
Mech. Mach. Theory
,
152
, p.
103917
.
26.
Ma
,
X. S.
,
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
27.
Song
,
Y. Q.
,
Ma
,
X. S.
, and
Dai
,
J. S.
,
2019
, “
A Novel 6R Metamorphic Mechanism With Eight Motion Branches and Multiple Furcation Points
,”
Mech. Mach. Theory
,
142
, p.
103598
.
28.
Sommese
,
A. J.
, and
Wampler,
,
C. W
,
2013
, “
Applying Numerical Algebraic Geometry to Kinematics
,”
21st Century Kinematics
,
J. M.
McCarthy
, ed., pp.
125
159
.
29.
He
,
X. Y.
,
Kong
,
X. W.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G. B.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
30.
Kong
,
X. W.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
31.
Kong
,
X. W.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
32.
Liu
,
K.
,
Yu
,
J. J.
, and
Kong
,
X. W.
,
2021
, “
Synthesis of Multi-Mode Single-Loop Bennett-Based Mechanisms Using Factorization of Motion Polynomials
,”
Mech. Mach. Theory
,
155
, p.
104110
.
33.
Pfurner
,
M.
,
Kong
,
X. W.
, and
Huang
,
C. T.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory
,
73
, pp.
117
129
.
34.
Kong
,
X. W.
, and
Huang
,
C. T.
,
2009
, “
Type Synthesis of Single-DOF Single-Loop Mechanisms With Two Operation Modes
,”
Proceedings of International Conference on Reconfigurable Mechanisms and Robots
,
Genova
,
June 22–24
, pp.
136
141
.
35.
Liu
,
J.
, and
Zhang
,
W.
,
2017
, “
Study on Design Catalogue of Variable Joints of Variable Topology Mechanism
,”
J. Hunan Univ., Nat. Sci.
,
44
(
10
), pp.
33
40
.
36.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
37.
Wang
,
R. Q.
,
Kang
,
X.
, and
Dai
,
J. S.
,
2021
, “
A Novel Reconfigurable Spherical Joint Based on Linear Independence of Screws and Its Resultant Metamorphic Mechanisms
,”
Mech. Mach. Theory
,
164
, p.
104351
.
38.
Han
,
Y. C.
,
Guo
,
W. Z.
,
Zhao
,
D. H.
, and
Li
,
Z. Y.
,
2022
, “
Multi-Mode Unified Modeling and Operation Capability Synergistic Evaluation for the Reconfigurable Legged Mobile Lander
,”
Mech. Mach. Theory
,
171
, p.
104714
.
39.
Chai
,
X. H.
,
Kang
,
X.
,
Gan
,
D. M.
,
Yu
,
H. Y.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6R Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary Among Classical Linkages
,”
Mech. Mach. Theory
,
156
, p.
104133
.
40.
Yu
,
J.
,
Liu
,
K.
, and
Kong
,
X.
,
2020
, “
State of the Art of Multi-Mode Mechanisms
,”
J. Mech. Eng.
,
56
(
19
), pp.
14
27
.
41.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
42.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2014
, “
Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031002
.
43.
He
,
X. Y.
,
Kong
,
X. W.
,
Hao
,
G. B.
, and
Ritchie
,
J.
,
2016
, “
Design and Analysis of a New 7R Single-Loop Mechanism With 4R, 6R and 7R Operation Modes
,”
Proceedings of 3rd IEEE/IFToMM/ASME International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Beijing, China
,
July 20–22
, pp.
27
37
.
44.
Qi
,
X. Z.
,
Huang
,
H. L.
,
Miao
,
Z. H.
,
Li
,
B.
, and
Deng
,
Z. Q.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
You do not currently have access to this content.