Abstract

Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles.

References

1.
Krotkov
,
E.
,
Hackett
,
D.
,
Jackel
,
L.
,
Perschbacher
,
M.
,
Pippine
,
J.
,
Strauss
,
J.
,
Pratt
,
G.
, and
Orlowski
,
C.
,
2017
, “
The Darpa Robotics Challenge Finals: Results and Perspectives
,”
J. Field Rob.
,
34
(
2
), pp.
229
240
.
2.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
Mit Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2245
2252
.
3.
Katz
,
B.
,
Carlo
,
J. D.
, and
Kim
,
S.
,
2019
, “
Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
6295
6301
.
4.
Hutter
,
M.
,
Gehring
,
C.
,
Jud
,
D.
,
Lauber
,
A.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Hwangbo
,
J.
,
Bodie
,
K.
,
Fankhauser
,
P.
,
Bloesch
,
M.
,
Diethelm
,
R.
,
Bachmann
,
S.
,
Melzer
,
A.
, and
Hoepflinger
,
M.
,
2016
, “
Anymal—A Highly Mobile and Dynamic Quadrupedal Robot
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
38
44
.
5.
Semini
,
C.
,
Tsagarakis
,
N. G.
,
Guglielmino
,
E.
,
Focchi
,
M.
,
Cannella
,
F.
, and
Caldwell
,
D. G.
,
2011
, “
Design of HyQ–a Hydraulically and Electrically Actuated Quadruped Robot
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
225
(
6
), pp.
831
849
.
6.
Focchi
,
M.
,
Havoutis
,
I.
,
Featherstone
,
R.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2017
, “
High-Slope Terrain Locomotion for Torque-Controlled Quadruped Robots
,”
Auton. Rob.
,
41
(
1
), pp.
259
272
.
7.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2015
, “
L 1 Adaptive Control for Bipedal Robots With Control Lyapunov Function Based Quadratic Programs
,”
2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
,
IEEE
, pp.
862
867
.
8.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J.
, and
Sreenath
,
K.
,
2020
, “
Dynamic Walking on Stepping Stones With Gait Library and Control Barrier Functions
,” pp.
384
399
.
9.
Nguyen
,
Q.
,
Agrawal
,
A.
,
Martin
,
W.
,
Geyer
,
H.
, and
Sreenath
,
K.
,
2018
, “
Dynamic Bipedal Locomotion Over Stochastic Discrete Terrain
,”
Inter. J. Rob. Res.
,
37
(
13-14
), pp.
1537
1553
.
10.
Sombolestan
,
M.
,
Chen
,
Y.
, and
Nguyen
,
Q.
,
2021
, “
Adaptive Force-Based Control for Legged Robots
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
,
IEEE
, pp.
7440
7447
.
11.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
,
G.
, and
Kim
,
S.
,
2018
, “
Dynamic Locomotion in the Mit Cheetah 3 Through Convex Model-Predictive Control
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
1
9
.
12.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
,
2014
, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Inter. J. Rob. Res.
,
33
(
9
), pp.
1251
1270
.
13.
Zucker
,
M.
,
Ratliff
,
N.
,
Dragan
,
A. D.
,
Pivtoraiko
,
M.
,
Klingensmith
,
M.
,
Dellin
,
C. M.
,
Bagnell
,
J. A.
, and
Srinivasa
,
S. S.
,
2013
, “
Chomp: Covariant Hamiltonian Optimization for Motion Planning
,”
Inter. J. Rob. Res.
,
32
(
9-10
), pp.
1164
1193
.
14.
Kavraki
,
L. E.
,
Kolountzakis
,
M. N.
, and
Latombe
,
J. -C.
,
1998
, “
Analysis of Probabilistic Roadmaps for Path Planning
,”
IEEE. Trans. Rob. Autom.
,
14
(
1
), pp.
166
171
.
15.
Kim
,
B.
,
Um
,
T. T.
,
Suh
,
C.
, and
Park
,
F. C.
,
2016
, “
Tangent Bundle Rrt: A Randomized Algorithm for Constrained Motion Planning
,”
Robotica
,
34
(
1
), pp.
202
225
.
16.
Berenson
,
D.
,
Siméon
,
T.
, and
Srinivasa
,
S. S.
,
2011
, “
Addressing Cost-Space Chasms in Manipulation Planning
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
IEEE
, pp.
4561
4568
.
17.
Jaillet
,
L.
,
Cortés
,
J.
, and
Siméon
,
T.
,
2010
, “
Sampling-Based Path Planning on Configuration-Space Costmaps
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
635
646
.
18.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Inter. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
19.
Manjunath
,
A.
, and
Nguyen
,
Q.
,
2021
, “
Safe and Robust Motion Planning for Dynamic Robotics Via Control Barrier Functions
,”
2021 60th IEEE Conference on Decision and Control (CDC)
,
Austin, TX
,
Dec. 14–17
,
IEEE
, pp.
2122
2128
.
20.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2010
, “
Incremental Sampling-Based Algorithms for Optimal Motion Planning
,”
Rob. Sci. Syst. VI
,
104
(
2
).
21.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2010
, “
Optimal Kinodynamic Motion Planning Using Incremental Sampling-Based Methods
,”
49th IEEE Conference on Decision and Control (CDC)
,
Atlanta, GA
,
Dec. 15–17
,
IEEE
, pp.
7681
7687
.
22.
Xiang
,
S.
,
Gao
,
H.
,
Liu
,
Z.
, and
Gosselin
,
C.
,
2020
, “
Dynamic Point-To-Point Trajectory Planning for Three Degrees-of-Freedom Cable-Suspended Parallel Robots Using Rapidly Exploring Random Tree Search
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041007
.
23.
Zucker
,
M.
,
Kuffner
,
J.
, and
Bagnell
,
J. A.
,
2008
, “
Adaptive Workspace Biasing for Sampling-Based Planners
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3757
3762
.
24.
Tahirovic
,
A.
, and
Ferizbegovic
,
M.
,
2018
, “
Rapidly-Exploring Random Vines (RRV) for Motion Planning in Configuration Spaces With Narrow Passages
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
7055
7062
.
25.
Ademovic
,
A.
, and
Lacevic
,
B.
,
2016
, “
Path Planning for Robotic Manipulators Using Expanded Bubbles of Free C-space
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
77
82
.
26.
McMahon
,
T.
,
Thomas
,
S.
, and
Amato
,
N. M.
,
2018
, “
Sampling-Based Motion Planning With Reachable Volumes for High-Degree-of-Freedom Manipulators
,”
Inter. J. Rob. Res.
,
37
(
7
), pp.
779
817
.
27.
Guo
,
Z.
,
Tachi
,
T.
, and
Yu
,
H.
,
2021
, “
Folding Process Planning of Rigid Origami Using the Explicit Expression and Rapidly Exploring Random Tree Method
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011003
.
28.
Venkatesan
,
V.
,
Seymour
,
J.
, and
Cappelleri
,
D. J.
,
2018
, “
Micro-Assembly Sequence and Path Planning Using Subassemblies
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061015
.
29.
Kennedy
,
Monroe
,
Ani Hsieh
,
M.
,
Bhattacharya
,
S.
, and
Kumar
,
V.
,
2018
, “
Optimal Paths for Polygonal Robots in SE(2)
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021005
.
30.
Kim
,
Y.
,
Kim
,
C.
, and
Hwangbo
,
J.
,
2022
, ““Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation,” preprint arXiv:2204.08647.
31.
Bretl
,
T.
,
2006
, “
Motion Planning of Multi-limbed Robots Subject to Equilibrium Constraints: The Free-climbing Robot Problem
,”
Inter. J. Rob. Res.
,
25
(
4
), pp.
317
342
.
32.
Escande
,
A.
,
Kheddar
,
A.
,
Miossec
,
S.
, and
Garsault
,
S.
,
2009
, “Planning Support Contact-Points for Acyclic Motions and Experiments on HRP-2,”
Experimental Robotics Springer Tracts in Advanced Robotics
,
O.
Khatib
,
V.
Kumar
, and
G .J.
Pappas
, eds.,
Springer
,
Berlin/Heidelberg
, Vol. 54, pp.
293
302
.
33.
Tonneau
,
S.
,
Mansard
,
N.
,
Park
,
C.
,
Manocha
,
D.
,
Multon
,
F.
, and
Pettré
,
J.
,
2018
, “A Reachability-Based Planner for Sequences of Acyclic Contacts in Cluttered Environments,”
Robotics Research
,
Springer
,
Cham
, pp.
287
303
.
34.
Hauser
,
K.
,
Bretl
,
T.
,
Harada
,
K.
, and
Latombe
,
J.-C.
,
2008
, “Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots,”
Algorithmic Foundation of Robotics VII
,
S.
Akella
,
N. M.
Amato
,
W. H.
Huang
, and
B.
Mishra
, eds., Springer Tracts in Advanced Robotics, vol. 47,
Springer
,
Berlin/Heidelberg
, pp.
507
522
.
35.
Grey
,
M. X.
,
Ames
,
A. D.
, and
Liu
,
C. K.
,
2017
, “
Footstep and Motion Planning in Semi-Unstructured Environments Using Randomized Possibility Graphs
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,pp.
4747
4753
.
36.
LaValle
,
S. M.
,
2001
, “
Randomized Kinodynamic Planning
,”
Inter. J. Rob. Res.
,
20
(
5
), pp.
378
400
.
37.
Geisert
,
M.
,
Yates
,
T.
,
Orgen
,
A.
,
Fernbach
,
P.
, and
Havoutis
,
I.
,
2019
, “
Contact Planning for the Anymal Quadruped Robot Using an Acyclic Reachability-Based Planner
,”
Towards Autonomous Robotic Systems
,
K.
Althoefer
,
J.
Konstantinova
, and
K.
Zhang
, eds.,
Springer International Publishing
,
Cham
, pp.
275
287
.
38.
Fankhauser
,
P.
,
Dario Bellicoso
,
C.
,
Gehring
,
C.
,
Dubé
,
R.
,
Gawel
,
A.
, and
Hutter
,
M.
,
2016
, “
Free Gait – An Architecture for the Versatile Control of Legged Robots
,”
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
Cancun, Mexico
,
Nov. 15–17
, pp.
1052
1058
.
39.
Hildebrandt
,
A.-C.
,
Klischat
,
M.
,
Wahrmann
,
D.
,
Wittmann
,
R.
,
Sygulla
,
F.
,
Seiwald
,
P.
,
Rixen
,
D.
, and
Buschmann
,
T.
,
2017
, “
Real-Time Path Planning in Unknown Environments for Bipedal Robots
,”
IEEE Rob. Auto. Lett.
,
2
(
4
), pp.
1856
1863
.
40.
Perrin
,
N.
,
Stasse
,
O.
,
Baudouin
,
L.
,
Lamiraux
,
F.
, and
Yoshida
,
E.
,
2011
, “
Fast Humanoid Robot Collision-Free Footstep Planning Using Swept Volume Approximations
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
427
439
.
41.
Zucker
,
M.
,
Ratliff
,
N.
,
Stolle
,
M.
,
Chestnutt
,
J.
,
Bagnell
,
J. A.
,
Atkeson
,
C. G.
, and
Kuffner
,
J.
,
2011
, “
Optimization and Learning for Rough Terrain Legged Locomotion
,”
Inter. J. Rob. Res.
,
30
(
2
), pp.
175
191
.
42.
Chignoli
,
M.
, and
Kim
,
S.
,
2021
, “
Online Trajectory Optimization for Dynamic Aerial Motions of a Quadruped Robot
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an China
,
May 30–June 5
,
IEEE
, pp.
7693
7699
.
43.
Cebe
,
O.
,
Tiseo
,
C.
,
Xin
,
G.
,
Lin
,
H.-c.
,
Smith
,
J.
, and
Mistry
,
M.
,
2021
, “
Online Dynamic Trajectory Optimization and Control for a Quadruped Robot
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an China
,
May 30–June 5
,
IEEE
, pp.
12773
12779
.
44.
Huang
,
S.
, and
Zhang
,
X.
,
2021
, “
Biologically Inspired Planning and Optimization of Foot Trajectory of a Quadruped Robot
,”
International Conference on Intelligent Robotics and Applications
,
Yantai, China
,
Oct. 22–25
,
Springer
,
Cham
, pp.
192
203
.
45.
Mordatch
,
I.
,
Todorov
,
E.
, and
Popović
,
Z.
,
2012
, “
Discovery of Complex Behaviors Through Contact-Invariant Optimization
,”
ACM Trans. Graphics (TOG)
,
31
(
4
), pp.
1
8
.
46.
Posa
,
M.
,
Cantu
,
C.
, and
Tedrake
,
R.
,
2014
, “
A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact
,”
Inter. J. Rob. Res.
,
33
(
1
), pp.
69
81
.
47.
Mastalli
,
C.
,
Focchi
,
M.
,
Havoutis
,
I.
,
Radulescu
,
A.
,
Calinon
,
S.
,
Buchli
,
J.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2017
, “
Trajectory and Foothold Optimization Using Low-Dimensional Models for Rough Terrain Locomotion
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
1096
1103
.
48.
Hereid
,
A.
,
Cousineau
,
E. A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
3D Dynamic Walking With Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
1447
1454
.
49.
Powell
,
M. J.
,
Zhao
,
H.
, and
Ames
,
A. D.
,
2012
, “
Motion Primitives for Human-Inspired Bipedal Robotic Locomotion: Walking and Stair Climbing
,”
2012 IEEE International Conference on Robotics and Automation
,
St. Paul, MN
,
May 14–18
, pp.
543
549
.
50.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Pardo
,
D.
,
Neunert
,
M.
, and
Buchli
,
J.
,
2017
, “
Fast Trajectory Optimization for Legged Robots Using Vertex-Based Zmp Constraints
,”
IEEE Rob. Auto. Lett.
,
2
(
4
), pp.
2201
2208
.
51.
Naveau
,
M.
,
Kudruss
,
M.
,
Stasse
,
O.
,
Kirches
,
C.
,
Mombaur
,
K.
, and
Souéres
,
P.
,
2017
, “
A Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control
,”
IEEE Rob. Auto. Lett.
,
2
(
1
), pp.
10
17
.
52.
Winkler
,
A. W.
,
Bellicoso
,
D. C.
,
Hutter
,
M.
, and
Buchli
,
J.
,
2018
, “
Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-effector Parameterization
,”
IEEE Rob. Auto. Lett. (RA-L)
,
3
(
7
), pp.
1560
1567
.
53.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Neunert
,
M.
,
Pardo
,
D.
, and
Buchli
,
J.
,
2017
, “
Online Walking Motion and Foothold Optimization for Quadruped Locomotion
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
5308
5313
.
54.
Li
,
Z.
,
Zeng
,
J.
,
Chen
,
S.
, and
Sreenath
,
K.
,
2021
, “Vision-Aided Autonomous Navigation of Bipedal Robots in Height-Constrained Environments,”
arXiv.2109.05714
https://arxiv.org/abs/2109.05714
55.
Buchanan
,
R.
,
Wellhausen
,
L.
,
Bjelonic
,
M.
,
Bandyopadhyay
,
T.
,
Kottege
,
N.
, and
Hutter
,
M.
,
2021
, “
Perceptive Whole-Body Planning for Multilegged Robots in Confined Spaces
,”
J. Field Rob.
,
38
(
1
), pp.
68
84
.
56.
Wang
,
P.
,
Zhou
,
X.
,
Zhao
,
Q.
,
Wu
,
J.
, and
Zhu
,
Q.
,
2021
, “
Search-Based Kinodynamic Motion Planning for Omnidirectional Quadruped Robots
,”
2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Delft, Netherlands
,
July 12–16
, pp.
823
829
.
57.
Fankhauser
,
P.
, and
Hutter
,
M.
,
2016
, “A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation,”
Robot Operating System (ROS) – The Complete Reference (Volume 1)
,
A.
Koubaa
, ed., Studies in Computational Intelligence 625,
Springer
,
Cham
.
58.
Baginski
,
B.
,
1997
, “
Efficient Motion Planning in High Dimensional Spaces: The Parallelized Zˆ3-method
,”
Proceedings of 6th International Workshop on Robotics in the Alpe-Adria-Danube Region RAAD’97
,
Cassino, Italy
,
June 26–28
.
59.
Stephens
,
B.
, and
Atkeson
,
C.
,
2010
, “
Push Recovery by Stepping for Humanoid Robots With Force Controlled Joints
,”
IEEE-RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 6–8
, pp.
52
59
.
60.
Gehring
,
C.
,
Coros
,
S.
,
Hutter
,
M.
,
Bloesch
,
M.
,
Hoepflinger
,
M.
, and
Siegwart
,
R.
,
2013
, “
Control of Dynamic Gaits for a Quadrupedal Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
3287
3292
.
You do not currently have access to this content.