Abstract

It is necessary to innovatively design the dexterity and applicability of end-effector to solve the last centimeter problem of automated production. This paper presents a scissor-shaped deployable metamorphic hand (SDMH). First, a scissor-shaped sub-mechanism module mechanism was designed with three metamorphic configurations. A novel connection mechanism was introduced. It can realize the passively adaptive grasping motion and avoid the bifurcation position problem in the clamping process. Subsequently, the three configurations of SDMH were analyzed by the sub-constraint function. Then, the conversion relationship between the various configurations was established through the adjacency matrix, which fundamentally explains the metamorphic mechanism of SDMH. Furthermore, the kinematics analysis of the SDMH was described by the D–H method. Kinematic equations of the single finger can be established in the different three grasping configurations using the matrix transformation method. The working space of SDMH can be obtained by numerical simulation. Finally, the physical prototype of SDMH was manufactured to verify the deployable and grasping performance of SDMH.

References

1.
Ghafoor
,
A.
,
Dai
,
J. S.
, and
Duffy
,
J.
,
2004
, “
Stiffness Modeling of the Soft-Finger Contact in Robotic Grasping
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
646
656
.
2.
Li
,
C.
,
Gu
,
X.
, and
Ren
,
H.
,
2017
, “
A Cable-Driven Flexible Robotic Grasper With Lego-Like Modular and Reconfigurable Joints
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2757
2767
.
3.
Amir
,
F.
, and
Jamie
,
P.
,
2017
, “
Grasp Mode and Compliance Control of an Underactuated Origami Gripper Using Adjustable Stiffness Joints
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2165
2173
.
4.
Xiao
,
H.
,
Yang
,
Q.
,
Ren
,
S.
,
Li
,
L.
,
Xu
,
K.
, and
Ding
,
X.
,
2018
, “
Design Analysis and Stiffness Test of a Large Telescopic Deployable Mechanism Joint
,”
J. Mech. Eng.
,
54
(
7
), pp.
1
10
.
5.
Šilha
,
J.
,
Pittet
,
J. N.
,
Hamara
,
M.
, and
Schildknecht
,
T.
,
2018
, “
Apparent Rotation Properties of Space Debris Extracted From Photometric Measurements
,”
Adv. Space Res.
,
61
(
3
), pp.
844
861
.
6.
Hu
,
B.
,
Yu
,
J.
,
Lu
,
Y.
,
Sui
,
C.
, and
Han
,
J.
,
2012
, “
Statics and Stiffness Model of Serial-Parallel Manipulator Formed by K Parallel Manipulators Connected in Series
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021012
.
7.
Kim
,
T.
,
Suh
,
J.
, and
Han
,
J.
,
2021
, “
Deployable Truss Structure With Flat-Form Storability Using Scissor-Like Elements
,”
Mech. Mach. Theory
,
159
, p.
104252
.
8.
Shi
,
C.
,
Guo
,
H.
,
Li
,
M.
,
Liu
,
R.
, and
Deng
,
Z.
,
2018
, “
Conceptual Configuration Synthesis of Line-Foldable Type Quadrangular Prismatic Deployable Unit Based on Graph Theory
,”
Mech. Mach. Theory
,
121
, pp.
563
582
.
9.
Zhao
,
J.
,
Chu
,
F.
, and
Feng
,
Z.
,
2009
, “
The Mechanism Theory and Application of Deployable Structures Based on SLE
,”
Mech. Mach. Theory
,
44
(
2
), pp.
324
335
.
10.
Zhao
,
J.
,
Wang
,
J.
,
Chu
,
F.
,
Feng
,
Z.
, and
Dai
,
J.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory
,
46
(
7
), pp.
998
1015
.
11.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
12.
Dai
,
J.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multi-fingered Metamorphic Hand—Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
13.
Dai
,
J.
, and
Wang
,
D.
,
2007
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1191
1197
.
14.
Li
,
S.
,
Wang
,
H.
,
Meng
,
Q.
, and
Dai
,
J.
,
2016
, “
Task-Based Structure Synthesis of Source Metamorphic Mechanisms and Constrained Forms of Metamorphic Joints
,”
Mech. Mach. Theory
,
96
(
2
), pp.
334
345
.
15.
Dai
,
J.
, and
Jones
,
J.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
16.
Bruzzone
,
L.
, and
Bozzini
,
G.
,
2010
, “
A Flexible Joints Microassembly Robot With Metamorphic Gripper
,”
Assem. Autom.
,
30
(
3
), pp.
240
247
.
17.
Huang
,
M.
,
Lu
,
Q.
,
Chen
,
W.
,
Qiao
,
J.
, and
Chen
,
X.
,
2019
, “
Design, Analysis, and Testing of a Novel Compliant Underactuated Gripper Review of Scientific Instruments
,”
Rev. Sci. Instrum.
,
90
(
4
), p.
045122
.
18.
Bai
,
G.
,
Kong
,
X.
, and
Ritchie
,
J.
,
2017
, “
Kinematic Analysis and Dimensional Synthesis of a Meso-gripper
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031017
.
19.
Teoh
,
Z.
,
Phillips
,
B.
,
Becker
,
K.
,
Whittredge
,
G.
, and
Wood
,
R.
,
2018
, “
Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms
,”
Sci. Rob.
,
3
(
20
), p.
eaat5276
.
20.
Wu
,
Y.
,
Huang
,
H.
,
Yang
,
X.
,
Li
,
B.
, and
Cao
,
Q.
,
2018
, “
Design and Analysis of a Quadrangular Truss-Shaped Deployable Robotic Manipulator for Grasping Large Scale Objects
,”
Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems
,
Shenzhen, China
,
Oct. 25–27
, pp.
460
465
.
21.
Zhou
,
J.
,
Ding
,
X.
, and
Qing
,
Y.
,
2013
, “
Automatic Planning and Coordinated Control for Redundant Dual-Arm Space Robot System
,”
Ind. Rob.
,
38
(
1
), pp.
27
37
.
22.
Jia
,
G.
,
Huang
,
H.
,
Bing
,
L.
,
Wu
,
Y.
,
Cao
,
Q.
, and
Guo
,
H.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
544
559
.
23.
Gao
,
C.
,
Huang
,
H.
,
Li
,
B.
, and
Jia
,
G.
,
2019
, “
Design of a Truss-Shaped Deployable Grasping Mechanism Using Mobility Bifurcation
,”
Mech. Mach. Theory
,
139
, pp.
346
358
.
24.
Li
,
R.
,
Yao
,
Y.
, and
Kong
,
X.
,
2017
, “
Reconfigurable Deployable Polyhedral Mechanism Based on Extended Parallelogram Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
467
480
.
25.
Hao
,
Y.
,
Gong
,
Z.
,
Xie
,
Z.
,
Guan
,
S.
,
Yang
,
X.
,
Wang
,
T.
, and
Wen
,
L.
,
2018
, “
A Soft Bionic Gripper With Variable Effective Length
,”
J. Bionic Eng.
,
15
(
2
), pp.
220
235
.
26.
Ziesmer
,
J. A.
, and
Voglewede
,
P. A.
,
2009
, “
Design, Analysis and Testing of a Metamorphic Gripper
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
775
780
.
27.
Ma
,
R.
, and
Dollar
,
A.
,
2011
, “
On Dexterity and Dexterous Manipulation
,”
Proceedings of the 15th International Conference on Advanced Robotics.
,
Tallinn, Estonia
,
June 20–23
.
28.
Backus
,
S.
, and
Dollar
,
A.
,
2016
, “
An Adaptive Three-Fingered Prismatic Gripper With Passive Rotational Joints
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
668
675
.
29.
Ma
,
R.
,
Dollar
,
A.
, and
Rojas
,
N.
,
2016
, “
The GR2 Gripper: An Underactuated Hand for Open-Loop In-Hand Planar Manipulation
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
763
770
.
30.
Visentin
,
F.
,
Mishra
,
A.
,
Naselli
,
G.
, and
Mazzolai
,
B.
,
2019,
, “
Simplified Sensing and Control of a Plant-Inspired Cable Driven Manipulator
,”
Proceedings of the 2nd IEEE International Conference on Soft Robotics.
,
Seoul, South Korea
,
Apr. 14–18
.
31.
Anand
,
M.
,
Alessio
,
M.
,
Emanuela
,
D. D.
,
Ali
,
S.
,
Francesca
,
T.
, and
Barbara
,
M.
,
2018
, “
Modular Continuum Manipulator: Analysis and Characterization of Its Basic Module
,”
Biomimetics
,
3
(
1
), pp.
3
18
.
32.
Jia
,
G.
,
Bing
,
L.
,
Huang
,
H.
,
Wu
,
Y.
, and
Cao
,
Q.
, “
Analysis of an Underactuated Biomimetic Octopus Hand for Grasping Space Non-Cooperative Objects
,”
Proceedings of the 2017 IEEE International Conference on Cyborg and Bionic Systems (CBS).
,
Beijing, China
,
Oct. 17–19
.
33.
Li
,
G.
,
Huang
,
H.
,
Guo
,
H.
, and
Li
,
B.
,
2019
, “
Design, Analysis and Control of a Novel Deployable Grasping Manipulator
,”
Mech. Mach. Theory
,
138
, pp.
182
204
.
34.
Li
,
G.
,
Huang
,
H.
,
Guo
,
H.
, and
Li
,
B.
,
2019
, “
Dynamic Modeling and Control for a Deployable Grasping Manipulator
,”
IEEE Access
,
7
, pp.
23000
23011
.
35.
Liu
,
J.
, and
Yu
,
D.
,
2012
, “
Metamorphic Equation of Variable Topology Mechanisms Based on the Constraint Function
,”
J. Mech. Eng.
,
48
(
9
), pp.
1
9
.
You do not currently have access to this content.