Abstract

This article presents the Origaker, a novel multi-mimicry quadruped robot. Based on a single-loop spatial metamorphic mechanism, the Origaker is able to transform between different working modes, as the reptile-, arthropod-, and mammal-like modes, without disassembly and reassembly. The combination of the metamorphic mechanism and the quadruped robot enables the Origaker to pitch vertically, twist horizontally, and change the positional correlation between the trunk and legs. In consideration of its reconfigurability and structure adaptability, gaits and movement strategies, namely, the fast spinning gait, the stair climbing gait, the self-recovery, packaging, and crawling through narrow spaces and right-angled bends, were proposed and analyzed, demonstrating that the metamorphic mechanism provides the robot with enhanced locomotivity. Finally, a prototype was developed and experimentally tested. The experiment demonstrates that the robot can crawl over various surfaces, execute the designed gaits and strategies on different terrains, and conquer challenging obstacles.

References

1.
Biewener
,
A. A.
,
2003
,
Animal Locomotion
,
Oxford University Press
,
Oxford, UK
.
2.
Kau
,
N.
,
Schultz
,
A.
,
Ferrante
,
N.
, and
Slade
,
P.
,
2019
, “
Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped
,”
IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
6309
6315
.
3.
Katz
,
B.
,
Carlo
,
J. D.
, and
Kim
,
S.
,
2019
, “
Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control
,”
IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
6295
6301
.
4.
Hutter
,
M.
,
Gehring
,
C.
,
Lauber
,
A.
,
Gunther
,
F.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Fankhauser
,
P.
,
Diethelm
,
R.
,
Bachmann
,
S.
,
Bloesch
,
M.
,
Kolvenbach
,
H.
,
Bjelonic
,
M.
,
Isler
,
L.
, and
Meyer
,
K.
,
2017
, “
ANYmal—Toward Legged Robots for Harsh Environments
,”
Adv. Rob.
,
31
(
17
), pp.
918
931
.
5.
Kolter
,
J. Z.
, and
Ng
,
A. Y.
,
2011
, “
The Stanford LittleDog: A Learning and Rapid Replanning Approach to Quadruped Locomotion
,”
Int. J. Rob. Res.
,
30
(
2
), pp.
150
174
.
6.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
10822
10825
.
7.
Havoutis
,
I.
,
Ortiz
,
J.
,
Bazeille
,
S.
,
Barasuol
,
V.
,
Semini
,
C.
, and
Caldwell
,
D. G.
,
2013
, “
Onboard Perception-Based Trotting and Crawling With the Hydraulic Quadruped Robot (HyQ)
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
6052
6057
.
8.
Fukuoka
,
Y.
,
Kimura
,
H.
,
Hada
,
Y.
, and
Takase
,
K.
,
2003
, “
Adaptive Dynamic Walking of a Quadruped Robot ’Tekken’ on Irregular Terrain Using a Neural System Model
,”
IEEE International Conference on Robotics and Automation
,
Taipei, Taiwan
,
Sept. 14–19
, pp.
2037
2042
.
9.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2013
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the Mit Cheetah Robot
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3307
3312
.
10.
Hildebrand
,
M.
,
1959
, “
Motions of the Running Cheetah and Horse
,”
J. Mammalogy
,
40
(
4
), pp.
481
495
.
11.
Akhlaq
,
A.
,
Ahmad
,
J.
, and
Umber
,
A.
,
2014
, “
Biologically Inspired Self-reconfigurable Hexapod With Adaptive Locomotion
,”
IEEE International Power Electronics and Motion Control Conference and Exposition
,
Antalya, Turkey
,
Sept. 21–24
, pp.
432
438
.
12.
Ritzmann
,
R. E.
,
Quinn
,
R. D.
, and
Fischer
,
M. S.
,
2004
, “
Convergent Evolution and Locomotion Through Complex Terrain by Insects, Vertebrates and Robots
,”
Arthropod Struct. Develop.
,
33
(
3
), pp.
361
379
.
13.
Eckert
,
P.
,
Spröwitz
,
A.
,
Witte
,
H.
, and
Ijspeert
,
A. J.
,
2015
, “
Comparing the Effect of Different Spine and Leg Designs for a Small Bounding Quadruped Robot
,”
IEEE International Conference on Robotics and Automation.
,
Seattle, WA
,
May 26–30
, pp.
3128
3133
.
14.
Kani
,
M. H. H.
,
Derafshian
,
M.
,
Bidgoly
,
H. J.
, and
Ahmadabadi
,
M. N.
,
2011
, “
Effect of Flexible Spine on Stability of a Passive Quadruped Robot: Experimental Results
,”
IEEE International Conference on Robotics and Biomimetics
,
Karon Beach, Thailand
,
Dec. 7–11
, pp.
2793
2798
.
15.
Fisher
,
C.
,
Shield
,
S.
, and
Patel
,
A.
,
2017
, “
The Effect of Spine Morphology on Rapid Acceleration in Quadruped Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
2121
2127
.
16.
Liu
,
Q.
,
Bao
,
Y.
,
Yu
,
W.
,
Zhang
,
J.
,
Li
,
C.
, and
Xie
,
X.
,
2019
, “
Mechanism of Spine Motion About Contact Time in Quadruped Running
,”
Chinese J. Mech. Eng.
,
32
(
18
), pp.
1
8
.
17.
Yesilevskiy
,
Y.
,
Yang
,
W.
, and
Remy
,
C. D.
,
2018
, “
Spine Morphology and Energetics: How Principles From Nature Apply to Robotics
,”
Bioinspir. Biomim.
,
13
(
3
), p.
036002
.
18.
Chai
,
X.
,
Kang
,
X.
,
Gan
,
D.
,
Yu
,
H.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6r Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary Among Classical Linkages
,”
Mech. Mach. Theory.
,
156
, p.
104133
.
19.
Zhang
,
C.
, and
Dai
,
J. S.
,
2018
, “
Continuous Static Gait With Twisting Trunk of a Metamorphic Quadruped Robot
,”
Mech. Sci.
,
9
(
1
), pp.
1
14
.
20.
Zhang
,
C.
, and
Dai
,
J.
,
2018
, “
Trot Gait With Twisting Trunk of a Metamorphic Quadruped Robot
,”
J. Bionic Eng.
,
15
, pp.
971
981
.
21.
Zhang
,
C.
,
Zhang
,
C.
,
Dai
,
J. S.
, and
Qi
,
P.
,
2019
, “
Stability Margin of a Metamorphic Quadruped Robot With a Twisting Trunk
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064501
.
22.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2020
, “
A Model-Free Solution for Stable Balancing and Locomotion of Floating-Base Legged Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
3816
3822
.
23.
Spyrakos-Papastavridis
,
E.
,
Childs
,
P. R. N.
, and
Dai
,
J. S.
,
2020
, “
Passivity Preservation for Variable Impedance Control of Compliant Robots
,”
IEEE/ASME Trans. Mechat.
,
25
(
5
), pp.
2342
2353
.
24.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2021
, “
Minimally Model-Based Trajectory Tracking and Variable Impedance Control of Flexible-Joint Robots
,”
IEEE. Trans. Ind. Electron.
,
68
(
7
), pp.
6031
6041
.
25.
Tang
,
Z.
,
Qi
,
P.
, and
Dai
,
J. S.
,
2017
, “
Mechanism Design of a Biomimetic Quadruped Robot
,”
Indus. Rob. Inter. J.
,
44
(
4
), pp.
512
520
.
26.
Zhong
,
Y.
,
Wang
,
R.
,
Feng
,
H.
, and
Chen
,
Y.
,
2019
, “
Analysis and Research of Quadruped Robot’s Legs: A Comprehensive Review
,”
Inter. J. Adv. Rob. Syst.
,
16
(
3
), pp.
1
15
.
27.
Cordes
,
S.
,
Berns
,
K.
,
Eberl
,
M.
,
Ilg
,
W.
, and
Buhrle
,
P.
,
1997
, “
On the Design of a Four-Legged Walking Machine
,”
IEEE International Conference on Advanced Robotics
,
Monterey, CA
,
July 7–9
, pp.
65
70
.
28.
Xu
,
K.
,
Ma
,
H.
,
Chen
,
J.
,
Zhang
,
W.
,
Deng
,
H.
, and
Ding
,
X.
,
2018
, “
Design and Analysis of a Metamorphic Quadruped Robot
,”
International Conference on Reconfigurable Mechanisms and Robots
,
Delft, The Netherlands
,
June 20–22
, pp.
1
7
.
29.
Castano
,
A.
,
Shen
,
W.
, and
Will
,
P.
,
2000
, “
CONRO: Towards Deployable Robots With Inter-robots Metamorphic Capabilities
,”
Auto. Rob.
,
8
, pp.
309
324
.
30.
Ozyalcin
,
K.
,
Akay
,
I. H.
,
Ozturk
,
Y.
,
Mengus
,
B.
,
Ozakyol
,
H.
, and
Bingul
,
Z.
,
2018
, “
New Design and Development of Reconfigurable-Hybrid Hexapod Robot
,”
IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
,
Oct. 21–23
, pp.
2583
2588
.
31.
Jakimovski
,
B.
, and
Maehle
,
E.
,
2010
, “In Situ Self-Reconfiguration of Hexapod Robot Oscar Using Biologically Inspired Approaches,”
Climbing and Walking Robots
,
Miripour
,
B.
, ed.,
IntechOpen
,
Rijeka
, pp.
311
332
, Ch. 19.
32.
Ding
,
X.
,
Zheng
,
Y.
, and
Xu
,
K.
,
2017
, “
Wheel-Legged Hexapod Robots: A Multifunctional Mobile Manipulating Platform
,”
Chinese J. Mech. Eng.
,
30
(
1
), pp.
3
6
.
33.
Gao
,
W.
,
Huo
,
K.
,
Seehra
,
J. S.
,
Ramani
,
K.
, and
Cipra
,
R. J.
,
2014
, “
Hexamorph: A Reconfigurable and Foldable Hexapod Robot Inspired by Origami
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
4598
4604
.
34.
Wu
,
J.
,
Yang
,
H.
,
Li
,
R.
,
Ruan
,
Q.
, and
Yan
,
S.
,
2021
, “
Design and Analysis of a Novel Octopod Platform With a Reconfigurable Trunk
,”
Mech. Mach. Theory.
,
156
, p.
104134
.
35.
Zhao
,
J.-S.
,
Wang
,
J.-Y.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory.
,
46
(
7
), pp.
998
1015
.
36.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
37.
Zhao
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
,
Li
,
B.
, and
Tian
,
J.
,
2019
, “
Actuation Distribution and Workspace Analysis of a Novel 3(3RRlS) Metamorphic Serial-Parallel Manipulator for Grasping Space Non-Cooperative Targets
,”
Mech. Mach. Theory.
,
139
, pp.
424
442
.
38.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
,
2005
, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
ASME International Mechanical Engineering Congress and Exposition, Design Engineering, Parts A and B
,
Orlando, FL
,
Nov. 5–11
, pp.
389
399
.
39.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
40.
Jia
,
G.
,
Huang
,
H.
,
Wang
,
S.
, and
Li
,
B.
,
2021
, “
Type Synthesis of Plane-Symmetric Deployable Grasping Parallel Mechanisms Using Constraint Force Parallelogram Law
,”
Mech. Mach. Theory.
,
161
, p.
104330
.
41.
Aten
,
Q. T.
,
Jensen
,
B. D.
,
Burnett
,
S. H.
, and
Howell
,
L. L.
,
2014
, “
A Self-Reconfiguring Metamorphic Nanoinjector for Injection Into Mouse Zygotes
,”
Rev. Sci. Instrum.
,
85
(
5
), p.
055005
.
42.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6r Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
43.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
44.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Bifurcated Configurations and Their Variations of an 8-Bar Linkage Derived From an 8-kaleidocycle
,”
Mech. Mach. Theory.
,
121
, pp.
745
754
.
45.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031002
.
46.
López-Custodio
,
P. C.
, and
Dai
,
J. S.
,
2019
, “
Design of a Variable-Mobility Linkage Using the Bohemian Dome
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092303
.
47.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids. Struct.
,
37
(
46
), pp.
7003
7027
.
48.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids. Struct.
,
42
(
8
), pp.
2287
2301
.
49.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
50.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory.
,
85
, pp.
116
128
.
51.
Rico
,
J.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory.
,
34
(
4
), pp.
559
586
.
52.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory.
,
76
, pp.
70
85
.
53.
López-Custodio
,
P.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
,
Pérez-Soto
,
G.
, and
Díez-Martínez
,
C.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Euro. J. Mech.-A/Solids
,
61
, pp.
198
215
.
54.
Kang
,
X.
,
Feng
,
H.
,
Dai
,
J. S.
, and
Yu
,
H.
,
2020
, “
High-Order Based Revelation of Bifurcation of Novel Schatz-Inspired Metamorphic Mechanisms Using Screw Theory
,”
Mech. Mach. Theory.
,
152
, p.
103931
.
55.
Saab
,
W.
,
Racioppo
,
P.
, and
Ben-Tzvi
,
P.
,
2019
, “
A Review of Coupling Mechanism Designs for Modular Reconfigurable Robots
,”
Robotica
,
37
(
2
), pp.
378
403
.
56.
Robertson
,
M. A.
,
Murakami
,
M.
,
Felt
,
W.
, and
Paik
,
J.
,
2019
, “
A Compact Modular Soft Surface With Reconfigurable Shape and Stiffness
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
16
24
.
57.
Yao
,
M.
,
Belke
,
C. H.
,
Cui
,
H.
, and
Paik
,
J.
,
2019
, “
A Reconfiguration Strategy for Modular Robots Using Origami Folding
,”
Int. J. Rob. Res.
,
38
(
1
), pp.
73
89
.
58.
Belke
,
C. H.
, and
Paik
,
J.
,
2017
, “
Mori: A Modular Origami Robot
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2153
2164
.
59.
Gandhi
,
N.
,
Saldaña
,
D.
,
Kumar
,
V.
, and
Phan
,
L. T. X.
,
2020
, “
Self-Reconfiguration in Response to Faults in Modular Aerial Systems
,”
IEEE Rob. Auto. Lett.
,
5
(
2
), pp.
2522
2529
.
60.
Long
,
J. A.
, and
Gordon
,
M. S.
,
2004
, “
The Greatest Step in Vertebrate History: A Paleobiological Review of the Fish-Tetrapod Transition
,”
Physiol. Biochem. Zool.
,
77
(
5
), pp.
700
719
.
61.
Hall
,
E. R.
,
1946
, “
The Principles of Classification and a Classification of Mammals
,”
J. Mammal.
,
27
(
3
), pp.
287
288
.
62.
Taylor
,
E. N.
,
Diele-Viegas
,
L. M.
,
Gangloff
,
E. J.
,
Hall
,
J. M.
,
Halpern
,
B.
,
Massey
,
M. D.
,
Rödder
,
D.
,
Rollinson
,
N.
,
Spears
,
S.
,
Sun
,
B.-j.
, and
Telemeco
,
R. S.
,
2021
, “
The Thermal Ecology and Physiology of Reptiles and Amphibians: A User’s Guide
,”
J. Experi. Zoology Part A: Ecol. Int. Physiol.
,
335
(
1
), pp.
13
44
.
63.
Basset
,
Y.
,
Cizek
,
L.
,
Cuénoud
,
P.
,
Didham
,
R. K.
,
Guilhaumon
,
F.
,
Missa
,
O.
,
Novotny
,
V.
,
Ødegaard
,
F.
,
Roslin
,
T.
,
Schmidl
,
J.
,
Tishechkin
,
A. K.
,
Winchester
,
N. N.
,
Roubik
,
D. W.
,
Aberlenc
,
H.-P.
,
Bail
,
J.
,
Barrios
,
H.
,
Bridle
,
J. R.
,
Castaño-Meneses
,
G.
,
Corbara
,
B.
,
Curletti
,
G.
,
Duarte da Rocha
,
W.
,
De Bakker
,
D.
,
Delabie
,
J. H. C.
,
Dejean
,
A.
,
Fagan
,
L. L.
,
Floren
,
A.
,
Kitching
,
R. L.
,
Medianero
,
E.
,
Miller
,
S. E.
,
Gama de Oliveira
,
E.
,
Orivel
,
J.
,
Pollet
,
M.
,
Rapp
,
M.
,
Ribeiro
,
S. P.
,
Roisin
,
Y.
,
Schmidt
,
J. B.
,
Sørensen
,
L.
, and
Leponce
,
M.
,
2012
, “
Arthropod Diversity in a Tropical Forest
,”
Science
,
338
(
6113
), pp.
1481
1484
.
64.
Giribet
,
G.
, and
Edgecombe
,
G. D.
,
2012
, “
Reevaluating the Arthropod Tree of Life
,”
Annu. Rev. Entomol.
,
57
(
1
), pp.
167
186
.
65.
Polet
,
D. T.
, and
Bertram
,
J. E. A.
,
2019
, “
An Inelastic Quadrupedal Model Discovers Four-Beat Walking, Two-beat Running, and Pseudo-Elastic Actuation as Energetically Optimal
,”
PLoS. Comput. Biol.
,
15
(
11
), pp.
1
29
.
66.
Cruse
,
H.
,
1990
, “
What Mechanisms Coordinate Leg Movement in Walking Arthropods?
,”
Trends. Neurosci.
,
13
(
1
), pp.
15
21
.
67.
Alexander
,
R. M.
,
1990
, “
Three Uses for Springs in Legged Locomotion
,”
Int J. Rob. Res.
,
9
(
2
), pp.
53
61
.
68.
Spagna
,
J. C.
,
Goldman
,
D. I.
,
Lin
,
P. -C.
,
Koditschek
,
D. E.
, and
Full
,
R. J.
,
2007
, “
Distributed Mechanical Feedback in Arthropods and Robots Simplifies Control of Rapid Running on Challenging Terrain
,”
Bioinspir. Biomim.
,
2
(
1
), pp.
9
18
.
69.
Kwak
,
B.
, and
Bae
,
J.
,
2018
, “
Locomotion of Arthropods in Aquatic Environment and Their Applications in Robotics
,”
Bioinspir. Biomim.
,
13
(
4
), p.
041002
.
70.
Wang
,
K.
,
Wu
,
X.
,
Wang
,
Y.
,
Li
,
B.
,
Yuan
,
B.
, and
Bai
,
S.
,
2021
, “
A Novel 2-SUR 6-DOF Parallel Manipulator Actuated by Spherical Motion Generators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
8022
8028
.
71.
Wang
,
K.
,
Wu
,
X.
,
Wang
,
Y.
,
Ding
,
J.
, and
Bai
,
S.
,
2022
, “
Kinematics of a 6-DOF Parallel Manipulator With Two Limbs Actuated by Spherical Motion Generators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
236
(
6
), pp.
2828
2846
.
72.
Zhang
,
G.
,
Du
,
J.
, and
To
,
S.
,
2014
, “
Study of the Workspace of a Class of Universal Joints
,”
Mech. Mach. Theory.
,
73
, pp.
244
258
.
73.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory.
,
36
(
6
), pp.
743
761
.
74.
Zhao
,
J.-S.
,
Liu
,
X.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
,
2013
, “
Design of an Ackermann-Type Steering Mechanism
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
227
(
11
), pp.
2549
2562
.
75.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Metamorphic Mechanism and Reconfiguration of a Biomimetic Quadruped Robot
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1A: 38th Computers and Information in Engineering Conference
, p.
V01AT02A039
.
76.
Zhang
,
X.
,
Gong
,
J.
, and
Yao
,
Y.
,
2016
, “
Effects of Head and Tail as Swinging Appendages on the Dynamic Walking Performance of a Quadruped Robot
,”
Robotica
,
34
(
12
), pp.
2878
2891
.
77.
Mastalli
,
C.
,
Havoutis
,
I.
,
Focchi
,
M.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2020
, “
Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1635
1648
.
78.
Miller
,
I. D.
,
Cladera
,
F.
,
Cowley
,
A.
,
Shivakumar
,
S. S.
,
Lee
,
E. S.
,
Jarin-Lipschitz
,
L.
,
Bhat
,
A.
,
Rodrigues
,
N.
,
Zhou
,
A.
,
Cohen
,
A.
,
Kulkarni
,
A.
,
Laney
,
J.
,
Taylor
,
C. J.
, and
Kumar
,
V.
,
2020
, “
Mine Tunnel Exploration Using Multiple Quadrupedal Robots
,”
IEEE Rob. Auto. Lett.
,
5
(
2
), pp.
2840
2847
.
79.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
80.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
,
1995
, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
(
4
), pp.
263
271
.
81.
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Kajita
,
S.
,
Yokoi
,
K.
,
Hirukawa
,
H.
,
Akachi
,
K.
, and
Isozumi
,
T.
,
2003
, “
The First Humanoid Robot That Has the Same Size as a Human and That Can Lie Down and Get Up
,”
IEEE International Conference on Robotics and Automation
,
Taipei, Taiwan
,
Sept. 14–19
,
pp. 1633– 1639
.
82.
Peng
,
S.
,
Ding
,
X.
,
Yang
,
F.
, and
Xu
,
K.
,
2017
, “
Motion Planning and Implementation for the Self-Recovery of an Overturned Multi-Legged Robot
,”
Robotica
,
35
(
5
), pp.
1107
1120
.
83.
Semini
,
C.
,
Tsagarakis
,
N. G.
,
Guglielmino
,
E.
,
Focchi
,
M.
,
Cannella
,
F.
, and
Caldwell
,
D. G.
,
2011
, “
Design of HyQ—A Hydraulically and Electrically Actuated Quadruped Robot
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
225
(
6
), pp.
831
849
.
84.
Niquille
,
S. C.
,
2019
, “
Regarding the Pain of SpotMini: Or What a Robot’s Struggle to Learn Reveals About the Built Environment
,”
Archit. Design
,
89
(
1
), pp.
84
91
.
85.
Spyrakos-Papastavridis
,
E.
,
Kashiri
,
N.
,
Childs
,
P. R.
, and
Tsagarakis
,
N. G.
,
2018
, “
Online Impedance Regulation Techniques for Compliant Humanoid Balancing
,”
Rob. Auton. Syst.
,
104
, pp.
85
98
.
86.
Spyrakos-Papastavridis
,
E.
,
Kashiri
,
N.
,
Lee
,
J.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2015
, “
Online Impedance Parameter Tuning for Compliant Biped Balancing
,”
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
,
Nov. 3–5
, pp.
210
216
.
87.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2021
, “
Flexible-Joint Humanoid Balancing Augmentation Via Full-State Feedback Variable Impedance Control
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021014
.
88.
Spyrakos-Papastavridis
,
E.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G.
,
2016
, “
Balance and Impedance Optimization Control for Compliant Humanoid Stepping
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
1349
1355
.
89.
Yang
,
C.
,
Yuan
,
K.
,
Zhu
,
Q.
,
Yu
,
W.
, and
Li
,
Z.
,
2020
, “
Multi-Expert Learning of Adaptive Legged Locomotion
,”
Sci. Rob.
,
5
(
49
), pp.
2174
.
90.
Messuri
,
D.
, and
Klein
,
C.
,
1985
, “
Automatic Body Regulation for Maintaining Stability of a Legged Vehicle During Rough-Terrain Locomotion
,”
IEEE J. Rob. Auto.
,
1
(
3
), pp.
132
141
.
91.
Zhang
,
C.-D.
, and
Song
,
S.-M.
,
1992
, “
Turning Gaits of a Quadrupedal Walking Machine
,”
Adv. Rob
,
7
(
2
), pp.
121
157
.
92.
González de Santos
,
P.
,
Garcia
,
E.
, and
Estremera
,
J.
,
2006
,
Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots
,
Springer Science & Business Media
,
London
.
You do not currently have access to this content.