Abstract

Self-folding systems, which can transform autonomously from a flat sheet into a 3D machine, provide opportunities for rapidly fabricable robots that are deployable on-demand. Existing self-folding fabrication processes convert fold patterns into laminated structures that respond to external stimuli, most commonly heat. However, demonstrations of these approaches have been generally limited to simple fold patterns with little ambiguity in folding configuration, and the reliability of self-folding drops drastically with the fold pattern complexity. In this paper, we explore methods of biasing a symmetric fold pattern, the origami hyperbolic paraboloid (hypar), to fold into one of the two possible configurations. The biasing methods are simulated using a bar-and-hinge inspired self-folding model that defines a single fold as a bending beam and the hypar crease pattern as an elastic spring network. Simulation results are also verified on physical samples. Based on these results, three techniques to bias the hypar by manipulating the target fold angles are proposed and tested. The results show that biasing a self-folding pattern can increase folding accuracy from 50% (purely random) to 70% and provide insights for improving the reliability of future self-folding systems with complex fold patterns.

References

1.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
,
Hosoya
,
N.
, and
Hashimoto
,
S.
,
2016
, “
Origami Robot: a Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2746
2754
.
2.
An
,
B.
, and
Rus
,
D.
,
2014
, “
Designing and Programming Self-Folding Sheets
,”
Rob. Auton. Syst.
,
62
(
7
), pp.
976
1001
.
3.
Zhu
,
Y.
,
Birla
,
M.
,
Oldham
,
K. R.
, and
Filipov
,
E. T.
,
2020
, “
Elastically and Plastically Foldable Electrothermal Micro-Origami for Controllable and Rapid Shape Morphing
,”
Adv. Funct. Mater.
,
30
(
40
), p.
2003741
.
4.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
5.
Onal
,
C. D.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Origami-Inspired Printed Robots
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2214
2221
.
6.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
7.
Miyashita
,
S.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2013
, “
Self-Pop-Up Cylindrical Structure by Global Heating
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
4065
4071
.
8.
He
,
H.
,
Guan
,
J.
, and
Lee
,
J. L.
,
2006
, “
An Oral Delivery Device Based on Self-Folding Hydrogels
,”
J. Controlled Release
,
110
(
2
), pp.
339
346
.
9.
Guan
,
J.
,
He
,
H.
,
Lee
,
L. J.
, and
Hansford
,
D. J.
,
2007
, “
Fabrication of Particulate Reservoir-Containing, Capsulelike, and Self-Folding Polymer Microstructures for Drug Delivery
,”
Small
,
3
(
3
), pp.
412
418
.
10.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Deliv. Rev.
,
64
(
14
), pp.
1579
1589
.
11.
Na
,
J.-H.
,
Evans
,
A. A.
,
Bae
,
J.
,
Chiappelli
,
M. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Hayward
,
R. C.
,
2015
, “
Programming Reversibly Self-Folding Origami With Micropatterned Photo-Crosslinkable Polymer Trilayers
,”
Adv. Mater.
,
27
(
1
), pp.
79
85
.
12.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
13.
Miskin
,
M. Z.
,
Dorsey
,
K. J.
,
Bircan
,
B.
,
Han
,
Y.
,
Muller
,
D. A.
,
McEuen
,
P. L.
, and
Cohen
,
I.
,
2018
, “
Graphene-Based Bimorphs for Micron-Sized, Autonomous Origami Machines
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
3
), pp.
466
470
.
14.
Yi
,
Y. W.
, and
Liu
,
C.
,
1999
, “
Magnetic Actuation of Hinged Microstructures
,”
J. Microelectromech. Syst.
,
8
(
1
), pp.
10
17
.
15.
Bowen
,
L.
,
Springsteen
,
K.
,
Frecker
,
M.
, and
Simpson
,
T.
,
2016
, “
Trade Space Exploration of Magnetically Actuated Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031012
.
16.
Kwok
,
K. S.
,
Huang
,
Q.
,
Mastrangeli
,
M.
, and
Gracias
,
D. H.
,
2020
, “
Self-Folding Using Capillary Forces
,”
Adv. Mater. Interfaces
,
7
(
5
), p.
1901677
.
17.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), pp.
12441
12445
.
18.
Chen
,
B. G.-G.
, and
Santangelo
,
C. D.
,
2018
, “
Branches of Triangulated Origami Near the Unfolded State
,”
Phys. Rev. X
,
8
(
1
), p.
011034
.
19.
Stern
,
M.
,
Pinson
,
M. B.
, and
Murugan
,
A.
,
2017
, “
The Complexity of Folding Self-Folding Origami
,”
Phys. Rev. X
,
7
(
4
), p.
041070
.
20.
Tachi
,
T.
, and
Hull
,
T. C.
,
2017
, “
Self-Foldability of Rigid Origami
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
21.
Santangelo
,
C. D.
,
2020
, “
Theory and Practice of Origami in Science
,”
Soft Matter
,
16
(
1
), pp.
94
101
.
22.
Stern
,
M.
,
Jayaram
,
V.
, and
Murugan
,
A.
,
2018
, “
Shaping the Topology of Folding Pathways in Mechanical Systems
,”
Nat. Commun.
,
9
(
1
), pp.
1
8
.
23.
Kang
,
J.-H.
,
Kim
,
H.
,
Santangelo
,
C. D.
, and
Hayward
,
R. C.
,
2019
, “
Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction
,”
Adv. Mater.
,
31
(
39
), p.
0193006
.
24.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.
25.
Kamp
,
L.
,
Dudek
,
T.
,
Adamik
,
M.
,
Slezák
,
S.
, and
Kooter
,
D.
,
2019
, “
The Structural Typology of Origami Hyperbolic Paraboloids
,”
IASS Annual Symposium - Structural Membranes
,
Barcelona, Spain
,
Oct. 7–10
.
26.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
.
27.
Filipov
,
E.
, and
Redoutey
,
M.
,
2018
, “
Mechanical Characteristics of the Bistable Origami Hypar
,”
Extreme Mech. Lett.
,
25
, pp.
16
26
.
28.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Lubiw
,
A.
,
1999
, “
Polyhedral Sculptures With Hyperbolic Paraboloids
,”
Proceedings of the 2nd Annual Conference of BRIDGES: Mathematical Connections in Art, Music, and Science (BRIDGES’99)
,
Winfield, KS
,
July 30–Aug. 1
, pp.
91
100
.
29.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.
30.
Lee-Trimble
,
M.
,
Kang
,
J.-H.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2021
, “
Robust Folding of Elastic Origami
,” preprint arXiv:2109.10989.
31.
Sung
,
C.
,
Lin
,
R.
,
Miyashita
,
S.
,
Yim
,
S.
,
Kim
,
S.
, and
Rus
,
D.
,
2017
, “
Self-Folded Soft Robotic Structures With Controllable Joints
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
580
587
.
32.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
,
2015
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
1490
1496
.
33.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
.
34.
Liu
,
K.
, and
Paulino
,
G.
,
2018
, “
Highly Efficient Nonlinear Structural Analysis of Origami Assemblages Using the Merlin2 Software
,”
OSME^7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 4–7
.
35.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
36.
Schenk
,
M.
, and
Guest
,
S. D.
,
2010
, “
Origami Folding: A Structural Engineering Approach
,”
5OSME: Proceedings of the 5th International Meeting on Origami Science, Mathematics and Education
,
Singapore
,
July 13–17
.
37.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.
39.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2019
, “
An Efficient Numerical Approach for Simulating Contact in Origami Assemblages
,”
Proc. R. Soc. A
,
475
(
2230
), p.
20190366
.
You do not currently have access to this content.