Abstract

Modular manipulators have broad application prospects in the field of narrow confined space owing to their characteristics of superior dexterity. However, compared with traditional ones, their mechanism design, modeling, and inverse kinematics (IK) are challenging due to their special structures and redundant degrees-of-freedom. In this paper, a modular cable-driven manipulator (CDM) is designed. A lightweight and expandable structure is proposed to reduce weight of the whole manipulator and improve its environmental adaptability. To calibrate its global posture, angle sensors are equipped with its joints. Its kinematics are rigorously analyzed. To obtain the IK of a hyper-redundant CDM in real-time, a fast heuristic method with adaptive joint constraints is introduced. Then, a segmented IK strategy is proposed by extending the IK solver to local CDM, which realizes the local joint migration motion under the stable overall configuration. Finally, numerical simulations are conducted and a physical prototype is developed to carry out experiments. The results show that the designed CDM has great performance in dexterity and accuracy.

References

1.
Du
,
Z.
,
Ouyang
,
G.
,
Xue
,
J.
, and
Yao
,
Y.
,
2020
, “
A Review on Kinematic, Workspace, Trajectory Planning and Path Planning of Hyper-Redundant Manipulators
,”
IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems
,
Xi'an, China
,
Oct. 10–13
, pp.
444
449
.
2.
Walker
,
I.
,
Choset
,
H.
, and
Chirikjian
,
G.
,
2016
, “Snake-Like and Continuum Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer, Cham
,
Switzerland
.
3.
Hwang
,
M.
, and
Kwon
,
D.
,
2020
, “
K-flex: A Flexible Robotic Platform for Scar-Free Endoscopic Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
16
(
2
), p.
e2078
.
4.
Mu
,
Z.
,
Liu
,
T.
,
Xu
,
W.
,
Lou
,
Y.
, and
Liang
,
B.
,
2019
, “
Dynamic Feedforward Control of Spatial Cable-Driven Hyper-Redundant Manipulators for On-Orbit Servicing
,”
Robotica
,
37
(
1
), pp.
18
38
.
5.
Buckingham
,
R.
, and
Graham
,
A.
,
2010
, “
Dexterous Manipulators for Nuclear Inspection and Maintenance-Case Study
,”
IEEE International Conference on Applied Robotics for the Power Industry
,
Montreal, QC, Canada
,
Oct. 5–7
, pp.
1
6
.
6.
Webster
,
R.
, and
Jones
,
B.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
7.
Wang
,
M.
,
Dong
,
X.
,
Ba
,
W.
,
Mohammad
,
A.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, “
Design, Modelling and Validation of a Novel Extra Slender Continuum Robot for In-Situ Inspection and Repair in Aeroengine
,”
Robot. Comput. Integr. Manuf.
,
67
, p.
102054
.
8.
Clark
,
A. B.
,
Mathivannan
,
V.
, and
Rojas
,
N.
,
2020
, “
A Continuum Manipulator for Open-Source Surgical Robotics Research and Shared Development
,”
IEEE Trans. Med. Robot. Bionics
,
3
(
1
), pp.
277
280
.
9.
Kim
,
J.
,
Kwon
,
S.
,
Moon
,
Y.
, and
Kim
,
K.
,
2021
, “
Cable-Movable Rolling Joint to Expand Workspace Under High External Load in a Hyper-Redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
501
512
.
10.
Kim
,
J.
,
Kwon
,
S.
,
Moon
,
Y.
, and
Kim
,
K.
,
1999
, “
Continuum Robots—A State of the Art
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May. 10–15
, pp.
2849
2854
.
11.
Yang
,
C.
,
Geng
,
S.
,
Walker
,
I.
,
Branson
,
D.
,
Liu
,
J.
,
Dai
,
J.
, and
Kang
,
R.
,
2020
, “
Geometric Constraint-Based Modeling and Analysis of a Novel Continuum Robot With Shape Memory Alloy Initiated Variable Stiffness
,”
Int. J. Robot. Res.
,
39
(
14
), pp.
1620
1634
.
12.
Yeshmukhametov
,
A.
,
Koganezawa
,
K.
, and
Yamamoto
,
Y.
,
2019
, “
A Novel Discrete Wire-Driven Continuum Robot Arm With Passive Sliding Disc: Design, Kinematics and Passive Tension Control
,”
Robotics
,
8
(
3
), p.
51
.
13.
Neppalli
,
S.
, and
Jones
,
B. A.
,
2007
, “
Design, Construction, and Analysis of a Continuum Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
.
14.
Trivedi
,
D.
,
Rahn
,
C.
, and
Walker
,
W. K. I.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
15.
Martín-Barrio
,
A.
,
Roldán-Gómez
,
J.
,
Rodríguez
,
I.
,
Cerro
,
J. D.
, and
Barrientos
,
A.
,
2020
, “
Design of a Hyper-Redundant Robot and Teleoperation Using Mixed Reality for Inspection Tasks
,”
Sensors
,
20
(
8
), p.
2181
.
16.
Liu
,
T.
,
Xu
,
W.
,
Yang
,
T.
, and
Li
,
Y.
,
2020
, “
A Hybrid Active and Passive Cable-Driven Segmented Redundant Manipulator: Design, Kinematics, and Planning
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
930
942
.
17.
Liu
,
T.
,
Mu
,
Z.
,
Xu
,
W.
,
Yang
,
T.
,
You
,
K.
,
Fu
,
H.
, and
Li
,
Y.
,
2019
, “
Improved Mechanical Design and Simplified Motion Planning of Hybrid Active and Passive Cable-Driven Segmented Manipulator With Coupled Motion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Macau, China
,
Nov. 3–8
, pp.
5978
5983
.
18.
Shikari
,
A.
, and
Asada
,
H.
,
2018
, “
Triple Scissor Extender Robot Arm: A Solution to the Last One Foot Problem of Manipulation
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3975
3982
.
19.
Hariharan
,
A.
, and
Raúl
,
O.
,
2015
, “
Real-Time Inverse Kinematics of (2n + 1) Dof Hyper-Redundant Manipulator Arm Via a Combined Numerical and Analytical Approach
,”
Mech. Mach. Theory
,
91
, pp.
209
226
.
20.
Zhang
,
Z.
,
Kong
,
L.
,
Yan
,
Z.
,
Chen
,
K.
,
Li
,
S.
,
Qu
,
X.
, and
Tan
,
N.
,
2018
, “
Comparisons Among Six Numerical Methods for Solving Repetitive Motion Planning of Redundant Robot Manipulators
,”
IEEE International Conference on Robotics and Biomimetics
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
1645
1652
.
21.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
(
3
), pp.
343
354
.
22.
Wang
,
Z.
,
Chang
,
J.
,
Li
,
B.
,
Wang
,
C.
, and
Liu
,
C.
,
2020
, “
Kinematics Solution of Snake-Like Manipulator Based on Improved Backbone Mode Method
,”
IEEE International Conference on Mechatronics and Automation
,
Beijing, China
,
Oct. 13–16
, pp.
1774
1779
.
23.
Tang
,
L.
,
Zhu
,
L.
,
Zhu
,
X.
, and
Gu
,
G.
,
2018
, “
A Serpentine Curve Based Motion Planning Method for Cable-Driven Snake Robots
,”
IEEE International Conference on Mechatronics and Machine Vision in Practice
,
Stuttgart, Germany
,
Nov. 20–22
, pp.
1
6
.
24.
Mu
,
Z.
,
Yuan
,
H.
,
Xu
,
W.
,
Liu
,
T.
, and
Liang
,
B.
,
2018
, “
A Segmented Geometry Method for Kinematics and Configuration Planning of Spatial Hyper-Redundant Manipulators
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
50
(
5
), pp.
1746
1756
.
25.
Aristidou
,
A.
, and
Lasenby
,
J.
,
2011
, “
Fabrik: A Fast, Iterative Solver for the Inverse Kinematics Problem
,”
Graph. Models
,
73
(
5
), pp.
243
260
.
26.
Liu
,
T.
,
Yang
,
T.
,
Xu
,
W.
,
Mylonas
,
G.
, and
Liang
,
B.
,
2021
, “
Efficient Inverse Kinematics and Planning of a Hybrid Active and Passive Cable-Driven Segmented Manipulator
,”
IEEE Trans. Syst. Man Cybern.: Syst.
, pp.
1
14
.
27.
Wang
,
J.
,
Tang
,
L.
,
Gu
,
G.
, and
Zhu
,
X.
,
2018
, “
Tip-Following Path Planning and Its Performance Analysis for Hyper-Redundant Manipulators
,”
J. Mech. Eng.
,
54
(
3
), pp.
18
25
.
28.
Ortenzi
,
V.
,
Marturi
,
N.
,
Rajasekaran
,
V.
,
Adjigble
,
M.
, and
Stolkin
,
R.
,
2019
, “
Singularity-Robust Inverse Kinematics Solver for Tele-manipulation
,”
IEEE International Conference on Automation Science and Engineering
,
Vancouver, BC, Canada
,
Aug. 22–26
, pp.
1821
1828
.
29.
Li
,
C.
,
Wu
,
Y.
,
Löwe
,
H.
, and
Li
,
Z.
,
2016
, “
Poe-Based Robot Kinematic Calibration Using Axis Configuration Space and the Adjoint Error Model
,”
IEEE Trans. Robot.
,
32
(
5
), pp.
1264
1279
.
30.
Cao
,
Y.
,
Lu
,
K.
,
Li
,
X.
, and
Zang
,
Y.
,
2011
, “
Accurate Numerical Methods for Computing 2d and 3d Robot Workspace
,”
Int. J. Adv. Robot. Syst.
,
8
(
6
), p.
76
.
31.
Yu
,
N.
,
Zou
,
W.
,
Tan
,
W.
, and
Yang
,
Z.
,
2017
, “
Augmented Virtual Stiffness Rendering of a Cable-Driven Sea for Human–Robot Interaction
,”
IEEE/CAA J. Autom. Sin.
,
4
(
4
), pp.
714
723
.
32.
Zhang
,
D.
,
Yuan
,
H.
, and
Cao
,
Z.
,
2020
, “
Environmental Adaptive Control of a Snake-Like Robot With Variable Stiffness Actuators
,”
IEEE/CAA J. Autom. Sin.
,
7
(
3
), pp.
745
751
.
33.
Cao
,
Z.
,
Zhang
,
D.
, and
Zhou
,
M.
,
2021
, “
Direction Control and Adaptive Path Following of 3-d Snake-Like Robot Motion
,”
IEEE Trans. Cybern.
, pp.
1
8
.
34.
Gong
,
D.
,
Wang
,
P.
,
Zhao
,
S.
,
Du
,
L.
, and
Duan
,
Y.
,
2017
, “
Bionic Quadruped Robot Dynamic Gait Control Strategy Based on Twenty Degrees of Freedom
,”
IEEE/CAA J. Autom. Sin.
,
5
(
1
), pp.
382
388
.
You do not currently have access to this content.