Abstract

Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities.

References

1.
Roberts
,
S.
,
1875
, “
On Three-Bar Motion in Plane Space
,”
Proc. Lond. Math. Soc.
,
7
(
1
), pp.
14
23
.
2.
Dijksman
,
E.
,
1976
,
Motion Geometry of Mechanisms
,
Cambridge University Press Archive
,
Cambridge
.
3.
Dijksman
,
E.
,
1971
, “
Six-Bar Cognates of Watt’s Form
,”
J. Eng. Ind.
,
93
(
1
), pp.
183
190
.
4.
Dijksman
,
E.
,
1971
, “
Six-Bar Cognates of a Stephenson Mechanism
,”
J. Mech.
,
6
(
1
), pp.
31
57
.
5.
Nolle
,
H.
,
1974
, “
Linkage Coupler Curve Synthesis: A Historical Review- II. Developments After 1875
,”
Mech. Mach. Theory
,
9
(
3–4
), pp.
325
349
.
6.
Nolle
,
H.
,
1974
, “
Linkage Coupler Curve Synthesis: A Historical Review- I. Developments Up to 1875
,”
Mech. Mach. Theory
,
9
(
2
), pp.
147
168
.
7.
Roth
,
B.
,
1965
, “
On the Multiple Generation of Coupler Curves
,”
Trans. ASME, Ser. B J. Eng. Ind.
,
87
(
2
), pp.
177
183
.
8.
Sherman
,
S. N.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2020
, “
Curve Cognate Constructions Made Easy
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
.
9.
Sherman
,
S. N.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2021
, “
A General Method for Constructing Planar Cognate Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031107
.
10.
Wampler
,
C. W.
,
2004
, “
Singular Foci of Planar Linkages
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1123
1138
.
11.
Wampler
,
C. W.
,
2004
, “
The Geometry of Singular Foci of Planar Linkages
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1139
1153
.
12.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
13.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2006
, “
Bertini: Software for Numerical Algebraic Geometry
,” bertini.nd.edu
14.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems with Bertini
, Vol.
25
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
15.
Wampler
,
C. W.
,
Morgan
,
A.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.
16.
Morgan
,
A. P.
, and
Wampler
,
C. W.
,
1989
, “
Solving a Planar Four-bar Design Problem Using Continuation
,”
Proceedings of the ASME 1989 Design Technical Conferences
,
Montreal, Quebec, Canada
, pp.
409
416
.
17.
Coolidge
,
J.
,
1959
,
A Treatise on Algebraic Plane Curves
,
Dover
,
New York
.
18.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover
,
New York
.
19.
Wampler
,
C.
,
2001
, “
Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
382
387
.
20.
Hauenstein
,
J. D.
, and
Sommese
,
A. J.
,
2010
, “
Witness Sets of Projections
,”
Appl. Math. Comput.
,
217
(
7
), pp.
3349
3354
.
21.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
McCoy
,
T. M.
,
Peterson
,
C.
, and
Sommese
,
A. J.
,
2013
, “
Recovering Exact Results From Inexact Numerical Data in Algebraic Geometry
,”
Exp. Math.
,
22
(
1
), pp.
38
50
.
22.
Choe
,
J.
,
Li
,
D.
,
Soh
,
G.
, and
McCarthy
,
J. M.
,
2009
, “
Synthesis of a 10-bar Driver for Planar Scale Change Linkages
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
, pp.
142
147
.
23.
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2011
, “
Regeneration Homotopies for Solving Systems of Polynomials
,”
Math. Comp.
,
80
(
273
), pp.
345
377
.
24.
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2017
, “
Unification and Extension of Intersection Algorithms in Numerical Algebraic Geometry
,”
Appl. Math. Comput.
,
293
(
1
), pp.
226
243
.
You do not currently have access to this content.