Abstract

Most untethered magnetic soft robots are controlled by a continuously applied magnetic field. The accuracy of their motion depends completely on the accuracy of external magnetic field, consequently any slight disturbance may cause a dramatic change. Here, we report a new structure and driven method design to achieve a novel magnetic soft robot, denoted as “BUCK”, which can achieve accurate and stable locomotion with weakly dependence on the magnetic field. The robot BUCK consists of functional magnetic composite materials with one central transportation platform and four crawling arms, whose motion is mainly based on hyperelastic buckling and recovering of the arms. BUCK is capable of cargo transportation with multimodal locomotion, such as crawling, climbing, and turning with high adaptability to various surfaces. Due to the applied discontinuous magnetic field, BUCK consumes much less driven energy compared with conventional magnetic robots. Moreover, we develop theoretical and numerical models to rationally design the precisely controlled BUCK. Our study shows applications in terms of transportation functions, such as for optical path adjustments and photographic tasks in complex circumstances. This work also provides new ideas on how to utilize nonlinear deformation more efficiently; one could combine the benefits for both the flexible electronics and actuation applications.

References

1.
Wallin
,
T.
,
Pikul
,
J.
, and
Shepherd
,
R.
,
2018
, “
3D Printing of Soft Robotic Systems
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
84
100
.
2.
Rich
,
S.
,
Wood
,
R.
, and
Majidi
,
C.
,
2018
, “
Untethered Soft Robotics
,”
Nat. Electron.
,
1
(
2
), pp.
102
112
.
3.
Hines
,
L.
,
Petersen
,
K.
,
Lum
,
G. Z.
, and
Sitti
,
M.
,
2017
, “
Soft Actuators for Small-Scale Robotics
,”
Adv. Mater.
,
29
(
13
), p.
1603483
.
4.
Tadesse
,
Y.
, and
Priya
,
S.
,
2012
, “
Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation
,”
ASME J. Mech. Rob.
,
4
(
2
), pp.
1
16
.
5.
Hasanzadeh
,
S.
, and
Janabi-Sharifi
,
F.
,
2014
, “
An Efficient Static Analysis of Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031011
.
6.
Yang
,
D.
,
Verma
,
M. S.
,
So
,
J. H.
,
Mosadegh
,
B.
,
Keplinger
,
C.
,
Lee
,
B.
,
Khashai
,
F.
,
Lossner
,
E.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2016
, “
Buckling Pneumatic Linear Actuators Inspired by Muscle
,”
Adv. Mater. Technol.
,
1
(
3
), pp.
31
33
.
7.
Hopkins
,
J. B.
,
Rivera
,
J.
,
Kim
,
C.
, and
Krishnan
,
G.
,
2015
, “
Synthesis and Analysis of Soft Parallel Robots Comprised of Active Constraints
,”
ASME J. Mech. Rob.
,
7
(
1
), pp.
1
13
.
8.
Ma
,
M.
,
Guo
,
L.
,
Anderson
,
D. G.
, and
Langer
,
R.
,
2013
, “
Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients
,”
Science
,
339
(
6116
), pp.
186
189
.
9.
Chen
,
Y.
,
Doshi
,
N.
,
Goldberg
,
B.
,
Wang
,
H.
, and
Wood
,
R. J.
,
2018
, “
Controllable Water Surface to Underwater Transition Through Electrowetting in a Hybrid Terrestrial-Aquatic Microrobot
,”
Nat. Commun.
,
9
(
1
), pp.
1
11
.
10.
Martel
,
S.
,
2017
, “
Beyond Imaging: Macro- and Microscale Medical Robots Actuated by Clinical MRI Scanners
,”
Sci. Rob.
,
2
(
3
), p.
eaam8119
.
11.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
12.
Tang
,
Y.
,
Chi
,
Y.
,
Sun
,
J.
,
Huang
,
T. H.
,
Maghsoudi
,
O. H.
,
Spence
,
A.
,
Zhao
,
J.
,
Su
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots
,”
Sci. Adv.
,
6
(
19
), p.
eaaz6912
.
13.
Howarter
,
J. A.
, and
Stafford
,
C. M.
,
2010
, “
Instabilities as a Measurement Tool for Soft Materials
,”
Soft Matter
,
6
(
22
), pp.
5661
5666
.
14.
Yang
,
J.
,
Li
,
S.
,
Luo
,
Y.
,
Yan
,
L.
, and
Wang
,
F.
,
2011
, “
Compressive Properties and Fracture Behavior of Ceramic Fiber-Reinforced Carbon Aerogel Under Quasi-Static and Dynamic Loading
,”
Carbon
,
49
(
5
), pp.
1542
1549
.
15.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci.
,
109
(
16
), pp.
5978
5983
.
16.
Luo
,
K.
,
Rothemund
,
P.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2019
, “
Soft Kink Valves
,”
J. Mech. Phys. Solids
,
131
, pp.
230
239
.
17.
Preston
,
D. J.
,
Rothemund
,
P.
,
Jiang
,
H. J.
,
Nemitz
,
M. P.
,
Rawson
,
J.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2019
, “
Digital Logic for Soft Devices
,”
Proc. Natl. Acad. Sci.
,
116
(
16
), pp.
7750
7759
.
18.
Rothemund
,
P.
,
Ainla
,
A.
,
Belding
,
L.
,
Preston
,
D. J.
,
Kurihara
,
S.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2018
, “
A Soft, Bistable Valve for Autonomous Control of Soft Actuators
,”
Sci. Rob.
,
3
(
16
), pp.
1
11
.
19.
Yang
,
D.
,
Mosadegh
,
B.
,
Ainla
,
A.
,
Lee
,
B.
,
Khashai
,
F.
,
Suo
,
Z.
,
Bertoldi
,
K.
, and
Whitesides
,
G. M.
,
2015
, “
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
,”
Adv. Mater.
,
27
(
41
), pp.
6323
6327
.
20.
Overveldea
,
J. T. B.
,
Kloeka
,
T.
,
D’Haena
,
J. J. A.
, and
Bertoldia
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci.
,
112
(
35
), pp.
10863
10868
.
21.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci.
,
115
(
22
), pp.
5698
5702
.
22.
Vavassori
,
P.
,
Pancaldi
,
M.
,
Pérez-Roldán
,
M. J.
,
Chuvilin
,
A.
, and
Berger
,
A.
,
2016
, “
Remote Magnetomechanical Nanoactuation
,”
Small
,
12
(
8
), pp.
1013
1023
.
23.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
(
1
), p.
8643
.
24.
Lee
,
W.
,
Nam
,
J.
,
Kim
,
J.
,
Jung
,
E.
, and
Jang
,
G.
,
2017
, “
Effective Locomotion and Precise Unclogging Motion of an Untethered Flexible-Legged Magnetic Robot for Vascular Diseases
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1388
1397
.
25.
Yan
,
X.-H.
,
Zhou
,
Q.
,
Vincent
,
M.
,
Deng
,
Y.
,
Yu
,
J.
,
Xu
,
J.
,
Xu
,
T.
,
Tang
,
T.
,
Bian
,
L.
,
Wáng
,
Y.-X. J.
,
Kostarelos
,
K.
, and
Zhang
,
L.
,
2017
, “
Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy
,”
Sci. Rob.
,
2
(
12
), p.
eaaq1155
.
26.
Cai
,
S. Y.
,
Chang
,
C. H.
,
Lin
,
H. I.
,
Huang
,
Y. F.
,
Lin
,
W. J.
,
Lin
,
S. Y.
,
Liou
,
Y. R.
,
Shen
,
T. L.
,
Huang
,
Y. H.
,
Tsao
,
P. W.
,
Tzou
,
C. Y.
,
Liao
,
Y. M.
, and
Chen
,
Y. F.
,
2018
, “
Ultrahigh Sensitive and Flexible Magnetoelectronics With Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence
,”
ACS Appl. Mater. Interfaces
,
10
(
20
), pp.
17393
17400
.
27.
Zhang
,
S.
,
Wang
,
Y.
,
Lavrijsen
,
R.
,
Onck
,
P. R.
, and
den Toonder
,
J. M. J.
,
2018
, “
Versatile Microfluidic Flow Generated by Moulded Magnetic Artificial Cilia
,”
Sens. Actuators, B
,
263
, pp.
614
624
.
28.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
29.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
.
30.
Kim
,
J.
,
Chung
,
S. E.
,
Choi
,
S. E.
,
Lee
,
H.
,
Kim
,
J.
, and
Kwon
,
S.
,
2011
, “
Programming Magnetic Anisotropy in Polymeric Microactuators
,”
Nat. Mater.
,
10
(
10
), pp.
747
752
.
31.
Camacho
,
J. M.
, and
Sosa
,
V.
,
2013
, “
Alternative Method to Calculate the Magnetic Field of Permanent Magnets With Azimuthal Symmetry
,”
Rev. Mex. Fis. E
,
59
(
1
), pp.
8
17
.
32.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K. I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
33.
Fu
,
H.
,
Nan
,
K.
,
Bai
,
W.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L.
,
Zhou
,
C.
,
Liu
,
Y.
,
Liu
,
F.
,
Wang
,
J.
,
Han
,
M.
,
Yan
,
Z.
,
Luan
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhao
,
J.
,
Cheng
,
X.
,
Li
,
M.
,
Lee
,
J. W.
,
Liu
,
Y.
,
Fang
,
D.
,
Li
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
.
You do not currently have access to this content.