Abstract

This paper introduces a new computational approach for the articulated joint/deformation actuation and motion control of robot manipulators with flexible components. Oscillations due to small deformations of relatively stiff robot components which cannot be ignored, are modeled in this study using the finite element (FE) floating frame of reference (FFR) formulation which employs two coupled sets of coordinates: the reference and elastic coordinates. The inverse dynamics, based on the FFR formulation, leads to driving forces associated with the deformation degrees of freedom. Because of the link flexibility, two approaches can be considered to determine the actuation forces required to achieve the desired motion trajectories. These two approaches are the partially constrained inverse dynamics (PCID) and the fully constrained inverse dynamics (FCID). The FCID approach, which will be considered in future investigations and allows for motion and shape control, can be used to achieve the desired motion trajectories and suppress undesirable oscillations. The new small-deformation PCID approach introduced in this study, on the other hand, allows for achieving the desired motion trajectories, determining systematically the actuation forces and moments associated with the robot joint and elastic degrees of freedom, and avoiding deteriorations in the vibration characteristics as measured by the differences between the inverse- and forward-dynamics solutions. A procedure for determining the actuation forces associated with the deformation degrees of freedom is proposed and is exemplified using piezoelectric actuators. The PCID solution is used to define a new set of algebraic equations that can be solved for the piezoelectric actuation voltages required to maintain the forward-dynamics oscillations within their inverse-dynamics limits. A planar two-link flexible-robot manipulator is presented to demonstrate the implementation of the joint/deformation actuation approach. The results obtained show deterioration in the robot precision if the deformation actuation is not considered.

References

1.
Book
,
W. J.
,
1981
, “
Recursive Lagrangian Dynamics of Flexile Manipulator Arms
,”
Int. J. Rob. Res.
,
3
(
3
), pp.
87
101
.
2.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, A Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
3.
Rahimi
,
H. N.
, and
Nazemizadeh
,
M.
,
2014
, “
Dynamic Analysis and Intelligent Control Techniques for Flexible Manipulators: A Review
,”
Adv. Rob.
,
28
(
2
), pp.
63
76
.
4.
Kiang
,
C. T.
,
Spowage
,
A.
, and
Yoong
,
C. K.
,
2015
, “
Review of Control and Sensor System of Flexible Manipulator
,”
J. Intell. Rob. Syst.
,
77
(
1
), pp.
187
213
.
5.
Sayahkarajy
,
M.
,
Mohamed
,
Z.
, and
Faudzi
,
A. A. M.
,
2016
, “
Review of Modelling and Control of Flexible-Link Manipulators
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
230
(
8
), pp.
861
873
.
6.
Subedi
,
D.
,
Tyapin
,
I.
, and
Hovland
,
G.
,
2020
, “
Review on Modeling and Control of Flexible Link Manipulators
,”
Model. Ident. Control
,
41
(
3
), pp.
141
163
.
7.
Kraus
,
K.
,
Sika
,
Z.
,
Benes
,
P.
,
Krivosei
,
J.
, and
Vyhlidal
,
T.
,
2020
, “
Mechatronic Robot Arm With Active Vibration Absorbers
,”
J. Vib. Control
,
26
(
13–14
), pp.
1145
1156
.
8.
Wang
,
P.
,
Zhang
,
D.
, and
Lu
,
B.
,
2020
, “
Trajectory Tracking Control for Chain-Series Robot Manipulator: Robust Adaptive Fuzzy Terminal Sliding Mode Control With Low-Pass Filter
,”
Int. J. Adv. Rob. Syst.
,
17
(
3
), pp.
1
12
.
9.
Liang
,
L.
,
Le
,
Z.
,
Zhang
,
S.
, and
Li
,
J.
,
2020
, “
Modeling and Controller Design of an Active Motion Compensated Gangway Based on Inverse Dynamics in Joint Space
,”
Ocean Eng.
,
197
, p.
106864
.
10.
Pereira
,
E.
,
Ciudad
,
R.
,
Aphale
,
S. S.
,
Feliu
,
V.
, and
Moheimani
,
S. O. R.
,
2009
, “
A Hybrid Control Strategy for Vibration Damping and Precise Tip-Positioning of a Single-Link Flexible Manipulator
,”
ICM2009 IEEE International Conference on Mechatronics
,
Malaga, Spain
,
April
, pp.
1
6
.
11.
Pereira
,
E.
,
Trapero
,
J. R.
,
Dıaz
,
I. M.
, and
Feliu
,
V.
,
2009
, “
Adaptive Input Shaping for Maneuvering Flexible Structures Using an Algebraic Identification Technique
,”
Automatica
,
45
(
4
), pp.
1046
1051
.
12.
Sabatini
,
M.
,
Gasbarri
,
P.
,
Monti
,
R.
, and
Palmerini
,
G. B.
,
2012
, “
Vibration Control of a Flexible Space Manipulator During on Orbit Operations
,”
Acta Astronaut.
,
73
, pp.
109
121
.
13.
Suarez
,
A.
,
Giordano
,
A. M.
,
Kondak
,
K.
,
Heredia
,
G.
, and
Ollero
,
A.
,
2018
, “
Flexible Link Long Reach Manipulator With Lightweight Dual Arm: Soft-Collision Detection, Reaction, and Obstacle Localization
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, pp.
406
411
.
14.
Qiu
,
Z. C.
, and
Zhang
,
W. Z.
,
2019
, “
Trajectory Planning and Diagonal Recurrent Neural Network Vibration Control of a Flexible Manipulator Using Structural Light Sensor
,”
Mech. Syst. Signal Process.
,
132
, pp.
563
594
.
15.
Comi
,
F.
,
Miguel
,
A. O.
,
Cavenago
,
F.
,
Ferretti
,
G.
,
Magnani
,
G.
, and
Rusconi
,
A.
,
2019
, “
Modelling, Validation and Control of DELIAN Flexible Manipulator
,”
IFAC-PapersOnLine
,
52
(
15
), pp.
364
369
.
16.
Runciman
,
M.
,
Darzi
,
A.
, and
Mylonas
,
G. P.
,
2019
, “
Soft Robotics in Minimally Invasive Surgery
,”
Soft Rob.
,
6
(
4
), pp.
423
443
.
17.
Lei
,
R. H.
, and
Chen
,
L.
,
2020
, “
Finite-Time Tracking Control and Vibration Suppression Based on the Concept of Virtual Control Force for Flexible Two-Link Space Robot
,”
Def. Technol.
,
17
, pp.
874
883
.
18.
Matsuno
,
F.
, and
Yamamoto
,
K.
,
1993
, “
Dynamic Hybrid Position/Force Control of a Flexible Manipulator
,”
Proceedings of 1993 IEEE International Conference on Robotics and Automation
, Atlanta, GA, May 2–6, pp.
462
467
.
19.
Lochan
,
K.
,
Roy
,
B. K.
, and
Subudhi
,
B.
,
2016
, “
A Review on Two-Link Flexible Manipulators
,”
Ann. Rev. Control
,
42
, pp.
346
367
.
20.
Lochan
,
K.
, and
Roy
,
B. K.
,
2018
, “
Second-Order SMC for Tip Trajectory Tracking and Tip Deflection Suppression of an AMM Modelled Nonlinear TLFM
,”
Int. J. Dyn. Control
,
6
(
3
), pp.
1310
1318
.
21.
Singh
,
N.
, and
Rajendran
,
S.
,
2016
, “
Integral Fast Output Sampling Control for Flexible Link Manipulators With LMI Approach
,”
Proceeding of the IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems
, Delhi, India, July 4–6, pp.
1
6
.
22.
Reddy
,
M. P. P.
, and
Jacob
,
J.
,
2017
, “
Vibration Control of Flexible Link Manipulator Using SDRE Controller and Kalman Filtering
,”
Stud. Inform. Control
,
26
(2), pp.
143
150
.
23.
Bazaei
,
A.
, and
Moallem
,
M.
,
2010
, “
Improving Force Control Bandwidth of Flexible-Link Arms Through Output Redefinition
,”
IEEE/ASME Trans. Mechatron.
,
16
(
2
), pp.
380
386
.
24.
Pradhan
,
S. K.
, and
Subudhi
,
B.
,
2020
, “
Position Control of a Flexible Manipulator Using a New Nonlinear Self-tuning PID Controller
,”
IEEE/CAA J. Autom. Sin.
,
7
(1), pp.
136
149
.
25.
Vijay
,
M.
, and
Jena
,
D.
,
2018
, “
Backstepping Terminal Sliding Mode Control of Robot Manipulator Using Radial Basis Functional Neural Networks
,”
Comput. Electr. Eng.
,
67
, pp.
690
707
.
26.
Liu
,
H.
, and
Zhang
,
T.
,
2012
, “
Fuzzy Sliding Mode Control of Robotic Manipulators With Kinematic and Dynamic Uncertainties
,”
J. Dyn. Syst., Meas., Control
,
134
(
6
), pp.
72
80
.
27.
Ahmad
,
M. A.
,
Tumari
,
M. Z. M.
, and
Nasir
,
A. N. K.
,
2013
, “
Composite Fuzzy Logic Control Approach to a Flexible Joint Manipulator
,”
Int. J. Adv. Rob. Syst.
,
10
(
1
), pp.
58
66
.
28.
Ho
,
H. F.
,
Wong
,
Y. K.
, and
Rad
,
A. B.
,
2007
, “
Robust Fuzzy Tracking Control for Robotic Manipulators
,”
Simul. Modell. Pract. Theory
,
15
(
7
), pp.
801
816
.
29.
Sarkhel
,
P.
,
Banerjee
,
N.
, and
Hui
,
N. B.
,
2020
, “
Fuzzy Logic-Based Tuning of PID Controller to Control Flexible Manipulators
,”
SN Appl. Sci.
,
2
(
6
), pp.
1124
1134
.
30.
Zhang
,
L.
, and
Liu
,
J.
,
2013
, “
Adaptive Boundary Control for Flexible Two-Link Manipulator Based on Partial Differential Equation Dynamic Model
,”
IET Control Theory Appl.
,
7
(
1
), pp.
43
51
.
31.
Macnab
,
C. J. B.
,
2009
, “
Stable Neural Control of a Flexible-Joint Manipulator Subjected to Sinusoidal Disturbance
,”
Proceedings of the Fourth International Conference on Autonomous Robots and Agents
, Wellington, New Zealand, Feb. 10–12, pp.
698
703
.
32.
Neto
,
A. D.
,
Goes
,
L. C. S.
, and
Nascimento
,
C. L.
,
2010
, “
Accumulative Learning Using Multiple ANN for Flexible Link
,”
IEEE Trans. Aerosp. Electr. Syst.
,
46
(
2
), pp.
508
524
.
33.
Kozel
,
D.
,
Koivo
,
A. J.
, and
Mahil
,
S. S.
,
1991
, “
General Force/Torque Relationship and Kinematic Representation for Flexible Link Manipulators
,”
J. Rob. Syst.
,
8
(
4
), pp.
531
556
.
34.
Gofron
,
M.
, and
Shabana
,
A. A.
,
1993
, “
Control Structure Interaction in the Nonlinear Analysis of Flexible Mechanical Systems
,”
Nonlinear Dyn.
,
4
, pp.
183
206
.
35.
Gofron
,
M.
, and
Shabana
,
A. A.
,
1995
, “
Equivalence of the Driving Elastic Forces in Flexible Multibody System
,”
Int. J. Numer. Methods Eng.
,
38
(
17
), pp.
2907
2928
.
36.
Lee
,
B. H.
,
2003
, “
Inverse Dynamic Analysis of Mechanical Systems in Joint Coordinate Space
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
217
(
1
), pp.
29
37
.
37.
Ata
,
A. A.
,
2010
, “
Inverse Dynamic Analysis and Trajectory Planning for Flexible Manipulator
,”
Inverse Prob. Sci. Eng.
,
18
(
4
), pp.
549
566
.
38.
Yang
,
K.
,
Yang
,
W.
, and
Wang
,
C.
,
2018
, “
Inverse Dynamic Analysis and Position Error Evaluation of the Heavy-Duty Industrial Robot With Elastic Joints: An Efficient Approach Based on Lie Group
,”
Nonlinear Dyn.
,
93
(
2
), pp.
487
504
.
39.
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2019
, “
Inverse Dynamics of an Industrial Robot Using Motion Constraints
,”
Proceeding of the 20th International Conference on Research and Education in Mechatronics (REM)
,
Wels, Austria
,
May 23–24
, pp.
1
7
.
40.
Lismonde
,
A.
,
Sonneville
,
V.
, and
Brüls
,
O.
,
2019
, “
A Geometric Optimization Method for the Trajectory Planning of flexible Manipulators
,”
Multibody Sys. Dyn.
,
47
(
4
), pp.
347
362
.
41.
Rong
,
Y.
,
Zhang
,
X. C.
, and
Qu
,
M. K.
,
2019
, “
Unified Inverse Dynamics for a Novel Class of Metamorphic Parallel Mechanisms
,”
Appl. Math. Model.
,
74
, pp.
280
300
.
42.
Ren
,
H.
, and
Ben-Tzvi
,
P.
,
2020
, “
Learning Inverse Kinematics and Dynamics of a Robotic Manipulator Using Generative Adversarial Networks
,”
Rob. Auton. Syst.
,
124
, p.
103386
.
43.
Bansevicius
,
R.
, and
Tolocka
,
R. T.
,
2002
, “Piezoelectric Actuators,”
Mechatronics Handbook
,
CRC Press
,
Boca Raton, FL
.
44.
Ouyang
,
P. R.
,
Tjiptoprodjo
,
R. C.
,
Zhang
,
W. J.
, and
Yang
,
G. S.
,
2008
, “
Micro-motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
,
38
(
5–6
), pp.
463
478
.
45.
Zheng
,
L.
,
Chen
,
W.
, and
Huo
,
D.
,
2020
, “
Review of the Vibration Devices for Vibration-Assisted Machining
,”
Int. J. Adv. Manuf. Technol.
,
108
(
5–6
), pp.
1631
1651
.
46.
Choi
,
S. B.
,
Cho
,
S. S.
,
Shin
,
H. C.
, and
Kim
,
H. K.
,
1999
, “
Quantitative Feedback Theory Control of a Single-Link Flexible Manipulator Featuring Piezoelectric Actuator and Sensor
,”
Smart Mater. Struct.
,
8
(
3
), pp.
338
349
.
47.
Shin
,
H. C.
, and
Choi
,
S. B.
,
2001
, “
Position Control of a Two-Link Flexible Manipulator Featuring Piezoelectric Actuators and Sensors
,”
Mechatronics
,
11
(
6
), pp.
707
729
.
48.
Sun
,
D.
,
Shan
,
J.
,
Su
,
Y.
,
Liu
,
H. H. T.
, and
Lam
,
C.
,
2005
, “
Hybrid Control of a Rotational Flexible Beam Using Enhanced PD Feedback With a Nonlinear Differentiator and PZT Actuators
,”
Smart Mater. Struct.
,
14
(
1
), pp.
69
78
.
49.
Bottega
,
V.
,
Molter
,
A.
,
Fonseca
,
J. S. O.
, and
Pergher
,
R.
,
2009
, “
Vibration Control of Manipulators With Flexible Nonprismatic Links Using Piezoelectric Actuators and Sensors
,”
Math. Probl. Eng.
,
2009
, Article ID 727385, pp.
1
16
.
50.
Jain
,
R. K.
,
Majumder
,
S.
,
Ghosh
,
B.
, and
Saha
,
S.
,
2015
, “
Deflection Control for Piezoelectric Actuator Through Voltage Signal and Its Application in Micromanipulation
,”
Mech. Syst. Signal Process
,
62–63
, pp.
305
323
.
51.
Gurses
,
K.
,
Buckham
,
B. J.
, and
Park
,
E. J.
,
2009
, “
Vibration Control of a Single-Link Flexible Manipulator Using an Array Of Fiber Optic Curvature Sensors and PZT Actuators
,”
Mechatronics
,
19
(
2
), pp.
167
177
.
52.
Lou
,
J.
,
Wei
,
Y.
,
Li
,
G.
,
Yang
,
Y.
, and
Xie
,
F.
,
2015
, “
Optimal Trajectory Planning and Linear Velocity Feedback Control of a Flexible Piezoelectric Manipulator for Vibration Suppression
,”
Shock Vib.
,
2015
, Article ID 952708, pp.
1
11
.
53.
Zhang
,
Q.
,
Li
,
C.
,
Zhang
,
J.
, and
Zhang
,
J.
,
2017
, “
Smooth Adaptive Sliding Mode Vibration Control of a Flexible Parallel Manipulator With Multiple Smart Linkages in Modal Space
,”
J. Sound Vib.
,
411
, pp.
1
19
.
54.
Chen
,
T.
,
Wang
,
Y.
,
Yang
,
Z.
,
Liu
,
H.
,
Liu
,
J.
, and
Sun
,
L.
,
2017
, “
A PZT Actuated Triple-Finger Gripper for Multi-Target Micromanipulation
,”
Micromachines
,
33
(8), pp.
1
11
.
55.
Shao
,
M.
,
Huang
,
Y.
, and
Silberschmidt
,
V. V.
,
2020
, “
Intelligent Manipulator With Flexible Link and Joint: Modeling and Vibration Control
,”
Shock Vib.
,
2020
, Article ID 4671358, pp.
1
15
.
56.
Ma
,
K.
, and
Ghasemi-Nejhad
,
M. N.
,
2008
, “
Adaptive Control of Flexible Active Composite Manipulators Driven by Piezoelectric Patches and Active Struts With Dead Zones
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
897
907
.
57.
Dong
,
X. J.
,
Meng
,
G.
, and
Peng
,
J. C.
,
2006
, “
Vibration Control of Piezoelectric Smart Structures Based on System Identification Technique: Numerical Simulation and Experimental Study
,”
J. Sound Vib.
,
297
(
3–5
), pp.
680
693
.
58.
Sun
,
D.
,
Mills
,
J. K.
,
Shan
,
J.
, and
Tso
,
S. K.
,
2004
, “
A PZT Actuator Control of A Single-Link Flexible Manipulator Based on Linear Velocity Feedback and Actuator Placement
,”
Mechatronics
,
14
(
4
), pp.
381
401
.
59.
Zhang
,
X.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
,
2008
, “
Vibration Control of Elastodynamic Response of a 3-PRR Flexible Parallel Manipulator Using PZT Transducers
,”
Robotica
,
26
(
5
), pp.
655
665
.
60.
Asada
,
H.
,
Ma
,
Z. D.
, and
Tokumaru
,
H.
,
1990
, “
Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control
,”
AMSE J. Dyn. Syst. Meas. Contr.
,
112
(
2
), pp.
177
185
.
61.
Bayo
,
E.
,
Papadopoulos
,
P.
,
Stubbe
,
J.
, and
Serna
,
M. A.
,
1989
, “
Inverse Dynamics and Kinematics of Multi-link Elastic Robots: An Iterative Frequency Domain Approach
,”
Int. J. Rob. Res.
,
8
(
6
), pp.
49
62
.
62.
Carrera
,
E.
, and
Serna
,
M. A.
,
1996
, “
Inverse Dynamics of Flexible Robots
,”
Math. Comput. Simul.
,
41
(
5–6
), pp.
485
508
.
63.
Beres
,
W.
,
Sasiadek
,
J. Z.
, and
Vukovich
,
G.
,
1993
, “
Control and Dynamic Analysis of Multilink Flexible Manipulator
,”
Proceedings—IEEE International Conference on Robotics and Automation
, Vol. 3, pp.
478
483
.
64.
Theodore
,
R. J.
, and
Ghosal
,
A.
,
1995
, “
Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators
,”
Int. J. Rob. Res.
,
14
(
2
), pp.
91
111
.
65.
Kim
,
J. S.
, and
Uchiyama
,
M.
,
2003
, “
Vibration Mechanism of Constrained Spatial Flexible Manipulators
,”
JSME Int. J., Ser. C
,
46
(1), pp.
123
128
.
66.
Fotouhi
,
R.
,
2007
, “
Dynamic Analysis of Very Flexible Beams
,”
J. Sound Vib.
,
305
(
3
), pp.
521
533
.
67.
Celentano
,
L.
, and
Coppola
,
A. A.
,
2011
, “
Computationally Efficient Method for Modeling Flexible Robots Based on the Assumed Modes Method
,”
Appl. Math. Comput.
,
218
(
8
), pp.
4483
4493
.
68.
Korayem
,
M. H.
,
Rahimi
,
H. N.
, and
Nikoobin
,
A.
,
2012
, “
Mathematical Modeling and Trajectory Planning of Mobile Manipulators With Flexible Links And Joints
,”
Appl. Math. Model.
,
36
(
7
), pp.
3229
3244
.
69.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
,
2012
, “
A New Method for Dynamic Modeling Of Flexible-Link Flexible-Joint Manipulators
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
014503
.
70.
Shabana
,
A. A.
,
2020
,
Dynamics of Multibody Systems
, 5th ed.,
Cambridge University Press
,
Cambridge, UK
.
71.
Zhang
,
Q.
,
Mills
,
J. K.
,
Cleghorn
,
W. L.
,
Jin
,
J.
, and
Zhao
,
C.
,
2015
, “
Trajectory Tracking and Vibration Suppression of a 3-PRR Parallel Manipulator With Flexible Links
,”
Multibody Sys. Dyn.
,
33
(
1
), pp.
27
60
.
72.
Kang
,
B.
, and
Mills
,
J. K.
,
2005
, “
Vibration Control of a Planar Parallel Manipulator Using Piezoelectric Actuators
,”
J. Intell. Rob. Syst.
,
42
(
1
), pp.
51
70
.
73.
Gilardi
,
G.
,
Buckham
,
B. J.
, and
Park
,
E. J.
,
2009
, “
Finite Element Modeling of a Slewing Non-linear Flexible Beam for Active Vibration Control With Arrays of Sensors and Actuators
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1941
1958
.
74.
Lu
,
E.
,
Li
,
W.
,
Yang
,
X.
,
Fan
,
M.
, and
Liu
,
Y.
,
2016
, “
Modelling and Composite Control of Single Flexible Manipulators With Piezoelectric Actuators
,”
Shock Vib.
,
2016
, Article ID 2689178, pp.
1
14
.
75.
Wei
,
J. J.
,
Qiu
,
Z. C.
,
Han
,
J. D.
, and
Wang
,
Y. C.
,
2010
, “
Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller
,”
J. Intell. Rob. Syst.
,
59
(
1
), pp.
31
56
.
76.
Yan
,
A. Z.
,
Wang
,
G. Q.
,
Xu
,
H.
, and
Sheng
,
Y.
,
2004
, “
Reduction of Residual Vibration in a Rotating Flexible Beam
,”
Acta Mech.
,
171
(
3–4
), pp.
137
149
.
77.
Maxwell
,
N. D.
, and
Asokanthan
,
S. F.
,
2003
, “
Optimally Distributed Actuator Placement and Control for a Slewing Single-Link Flexible Manipulator
,”
Smart Mater. Struct.
,
12
(
2
), pp.
287
296
.
78.
Yan
,
X. J.
, and
Yam
,
L. H.
,
2002
, “
Optimal Design of Number and Locations of Actuators in Active Vibration Control of a Space Truss
,”
Smart Mater. Struct.
,
11
(
4
), pp.
496
593
.
79.
Shabana
,
A. A.
,
Eldeeb
,
A. E.
, and
Bai
,
Z.
,
2021
, “
Near-Elimination of Small Oscillations of Articulated Flexible-Robot Systems
,”
Sound Vib.
,
500
, p.
116015
.
You do not currently have access to this content.