Abstract

The human earcanal can accommodate several types of in-ear devices including hearing aids, earphones, hearing protectors, and earplugs. This canal-type home has a neighbor called the temporomandibular joint (TMJ) whose movements slightly deform the shape of the earcanal. While these cyclic deformations can influence the positioning, comfort, and functioning of ear-fitted devices, they can also provide a significant amount of energy to harvest. Given their importance, the TMJ movements and earcanal deformations have been well studied. However, their mutual actions are still not fully understood. This paper presents the development of a six-bar kinematic TMJ simulator capable of replicating the complicated motion of the jaw. The development relies on a two-phase mechanism design algorithm to numerically optimize and analytically synthesize linkage mechanisms for which the classical optimization approaches cannot return a converged solution. The proposed algorithm enables the design of a kinematic simulator to generate the TMJ path with an average error as low as 1.65% while respecting all the hinge-axis parameters of the jaw. This algorithm can be subsequently used to solve nonlinear complex linkage synthesis problems, and ultimately, the developed kinematic simulator can be used to further investigate TMJ–earcanal interactions.

References

1.
Delnavaz
,
A.
, and
Voix
,
J.
,
2013
, “
Ear Canal Dynamic Motion as a Source of Power for In-Ear Devices
,”
J. Appl. Phys.
,
113
(
6
), p.
064701
.
2.
Bouchard-Roy
,
J.
,
Delnavaz
,
A.
, and
Voix
,
J.
,
2020
, “
In-Ear Energy Harvesting: Evaluation of the Power Capability of the Temporomandibular Joint
,”
IEEE Sens. J.
,
20
(
12
), pp.
6338
6345
.
3.
Carioli
,
J.
,
Delnavaz
,
A.
,
Zednik
,
R. J.
, and
Voix
,
J.
,
2016
, “
Power Capacity From Earcanal Dynamic Motion
,”
AIP Adv.
,
6
(
12
), p.
125203
.
4.
Travers
,
K. H.
,
Buschang
,
P. H.
,
Hayasaki
,
H.
, and
Throckmorton
,
G. S.
,
2000
, “
Associations Between Incisor and Mandibular Condylar Movements During Maximum Mouth Opening in Humans
,”
Arch. Oral Biol.
,
45
(
4
), pp.
267
275
.
5.
Koolstra
,
J.
,
Naeije
,
M.
, and
Van Eijden
,
T.
,
2001
, “
The Three-Dimensional Active Envelope of Jaw Border Movement and Its Determinants
,”
J. Dent. Res.
,
80
(
10
), pp.
1908
1912
.
6.
Azuma
,
T.
,
Ito
,
J.
,
Kutsuki
,
M.
,
Nakai
,
R.
,
Fujita
,
S.
, and
Tsutsumi
,
S.
,
2009
, “
Analysis of the Mandibular Movement by Simultaneous Multisection Continuous Ultrafast MRI
,”
Magn. Reson. Imag.
,
27
(
3
), pp.
423
433
.
7.
Baeyens
,
J.-P.
,
Gilomen
,
H.
,
Erdmann
,
B.
,
Clijsen
,
R.
,
Cabri
,
J.
, and
Vissers
,
D.
,
2013
, “
In Vivo Measurement of the 3D Kinematics of the Temporomandibular Joint Using Miniaturized Electromagnetic Trackers: Technical Report
,”
Med. Biol. Eng. Comput.
,
51
(
4
), pp.
479
484
.
8.
Yatabe
,
M.
,
Zwijnenburg
,
A.
,
Megens
,
C.
, and
Naeije
,
M.
,
1997
, “
Movements of the Mandibular Condyle Kinematic Center During Jaw Opening and Closing
,”
J. Dent. Res.
,
76
(
2
), pp.
714
719
.
9.
Ahn
,
S.-J.
,
Tsou
,
L.
,
Antonio Sánchez
,
C.
,
Fels
,
S.
, and
Kwon
,
H.-B.
,
2015
, “
Analyzing Center of Rotation During Opening and Closing Movements of the Mandible Using Computer Simulations
,”
J. Biomech.
,
48
(
4
), pp.
666
671
.
10.
Mesnard
,
M.
,
Coutant
,
J. C.
,
Aoun
,
M.
,
Morlier
,
J.
,
Cid
,
M.
, and
Caix
,
P.
,
2012
, “
Relationships Between Geometry and Kinematic Characteristics in the Temporomandibular Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
4
), pp.
393
400
.
11.
Chen
,
C.-C.
,
Lin
,
C.-C.
,
Lu
,
T.-W.
,
Chiang
,
H.
, and
Chen
,
Y.-J.
,
2013
, “
Feasibility of Differential Quantification of 3D Temporomandibular Kinematics During Various Oral Activities Using a Cone-Beam Computed Tomography-Based 3D Fluoroscopic Method
,”
J. Dent. Sci.
,
8
(
2
), pp.
151
159
.
12.
Gallo
,
L.
,
Airoldi
,
G.
,
Airoldi
,
R.
, and
Palla
,
S.
,
1997
, “
Description of Mandibular Finite Helical Axis Pathways in Asymptomatic Subjects
,”
J. Dent. Res.
,
76
(
2
), pp.
704
713
.
13.
Hayashi
,
K.
,
Hayashi
,
M.
,
Reich
,
B.
,
Lee
,
S.-P.
,
Sachdeva
,
A. U. C.
, and
Mizoguchi
,
I.
,
2012
, “
Functional Data Analysis of Mandibular Movement Using Third-Degree B-Spline Basis Functions and Self-Modeling Regression
,”
Orthod. Waves
,
71
(
1
), pp.
17
25
.
14.
Takanobu
,
H.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1994
, “
Control of a Mastication Robot for Reduction of Jaw Joint Force Focusing on Musculus Temporalis
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
,
Sept. 12–16
, Vol. 3, IEEE, pp.
1824
1831
.
15.
Takanishi
,
A.
,
Tanase
,
T.
,
Kumei
,
M.
, and
Kato
,
I.
,
1991
, “
Development of 3 DOF Jaw Robot WJ-2 as a Human’s Mastication Simulator
,”
Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments
,
Pisa, Italy
,
June 19–22
, Vol. 1, IEEE, pp.
277
282
.
16.
Takanobu
,
H.
,
Yajima
,
T.
,
Nakazawa
,
M.
,
Takanishi
,
A.
,
Ohtsuki
,
K.
, and
Ohnishi
,
M.
,
1998
, “
Quantification of Masticatory Efficiency With a Mastication Robot
,”
Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 16–21
, Vol. 2, IEEE, pp.
1635
1640
.
17.
Galer
,
B.
,
Hockenberry
,
N.
,
Maloof
,
J.
, and
Monte-Lowry
,
M.
,
2007
, “
Human Jaw Motion Simulator
,”
Technical Design Paper 65, April
,
Northeaster University
,
Boston, MA
.
18.
Tahir
,
A. M.
,
Jilich
,
M.
,
Trinh
,
D. C.
,
Cannata
,
G.
,
Barberis
,
F.
, and
Zoppi
,
M.
,
2019
, “
Architecture and Design of a Robotic Mastication Simulator for Interactive Load Testing of Dental Implants and the Mandible
,”
J. Prosthet. Dent.
,
122
(
4
), pp.
389.e1
389.e8
.
19.
Mostashiri
,
N.
,
Dhupia
,
J.
,
Verl
,
A.
,
Bronlund
,
J.
, and
Xu
,
W.
,
2020
, “
Optimizing the Torque Distribution of a Redundantly Actuated Parallel Robot to Study the Temporomandibular Reaction Forces During Food Chewing
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051008
.
20.
Pirzanski
,
C.
, and
Berge
,
B.
,
2005
, “
Ear Canal Dynamics: Facts Versus Perception
,”
Hear. J.
,
58
(
10
), p.
50
.
21.
Pirzanski
,
C.
,
2010
, “
Earmold Retention Issues: Why Does This Earmold Keep Falling Out?
,”
Hear. Rev.
,
17
(
5
), pp.
26
34
.
22.
Nielsen
,
C.
, and
Darkner
,
S.
,
2011
, “
The Cartilage Bone Junction and Its Implication for Deep Canal Hearing Instrument Fittings
,”
Hear. J.
,
64
(
3
), p.
35
.
23.
Haulin
,
E. N.
,
Lakis
,
A. A.
, and
Vinet
,
R.
,
2001
, “
Optimal Synthesis of a Planar Four-Link Mechanism Used in a Hand Prosthesis
,”
Mech. Mach. Theory
,
36
(
11
), pp.
1203
1214
.
24.
Tsuge
,
B. Y.
,
Plecnik
,
M. M.
, and
Michael McCarthy
,
J.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061009
.
25.
Guo
,
G.
,
Zhang
,
J.
, and
Gruver
,
W. A.
,
1993
, “
Optimal Design of a Six-Bar Linkage With One Degree of Freedom for an Anthropomorphic Three-Jointed Finger Mechanism
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
207
(
3
), pp.
185
190
.
26.
Doutres
,
O.
,
Sgard
,
F.
,
Terroir
,
J.
,
Perrin
,
N.
,
Jolly
,
C.
,
Gauvin
,
C.
, and
Negrini
,
A.
,
2019
, “
A Critical Review of the Literature on Comfort of Hearing Protection Devices: Definition of Comfort and Identification of Its Main Attributes for Earplug Types
,”
Int. J. Audiol.
,
58
(
12
), pp.
824
833
.
27.
Kochkin
,
S.
,
2000
, “
MarkeTrak V: “Why My Hearing Aids are in the Drawer
,”
Hear. J.
,
53
(
2
), p.
34
.
28.
Berger
,
E. H.
, and
Voix
,
J.
,
2018
,
The Noise Manual
, 6th ed.,
D. K.
Meinke
,
E. H.
Berger
,
R.
Neitzel
,
D. P.
Driscoll
, and
L. D.
Hager
, eds.,
American Industrial Hygiene Association
,
Falls Church, VA
, pp.
379
454
.
29.
Delnavaz
,
A.
, and
Voix
,
J.
,
2014
, “
Energy Harvesting for In-Ear Devices Using Ear Canal Dynamic Motion
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
583
590
.
30.
Delnavaz
,
A.
, and
Voix
,
J.
,
2014
, “
Flexible Piezoelectric Energy Harvesting From Jaw Movements
,”
Smart Mater. Struct.
,
23
(
10
), p.
105020
.
31.
Carioli
,
J.
,
Delnavaz
,
A.
,
Zednik
,
R. J.
, and
Voix
,
J.
,
2018
, “
Piezoelectric Earcanal Bending Sensor
,”
IEEE Sens. J.
,
18
(
5
), pp.
2060
2067
.
32.
Peck
,
C. C.
,
Langenbach
,
G. E. J.
, and
Hannam
,
A. G.
,
2000
, “
Dynamic Simulation of Muscle and Articular Properties During Human Wide Jaw Opening
,”
Arch. Oral Biol.
,
45
(
11
), pp.
963
982
.
33.
Simón Mata
,
A.
,
Bataller Torras
,
A.
,
Cabrera Carrillo
,
J. A.
,
Ezquerro Juanco
,
F.
,
Guerra Fernández
,
A. J.
,
Nadal Martínez
,
F.
, and
Ortiz Fernández
,
A.
,
2016
,
Fundamentals of Machine Theory and Mechanisms
, 1, Vol.
40
,
Springer International Publishing
,
Cham
, pp.
1
409
.
You do not currently have access to this content.