Abstract

An algorithm is developed to determine the available force set (AFS) of the 3-RPRR kinematically redundant planar parallel manipulator. The results of the algorithm are verified against a brute force approach and are found to yield exact results with significantly less computational time. The use of the AFS in a robot design context is illustrated through the analysis of two performance indices: the maximum pure force capable of being applied in any direction and the maximum pure force capable of being applied in a given direction. The algorithm is used to compute the AFS and the performance indices throughout the 3-RPRR robot’s workspace. The proposed methodology is a useful tool for the design and analysis of the 3-RPRR robot and could be adapted to other kinematically redundant planar parallel manipulators.

References

1.
Nokleby
,
S.
,
Fisher
,
R.
,
Podhorodeski
,
R.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.
2.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), pp.
1
10
.
3.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
42
(
2
), pp.
3
9
.
4.
Kokkinis
,
T.
, and
Paden
,
B.
,
1989
, “
Kinetostatic Performance Limits of Cooperating Robot Manipulators
,”
Proceedings of the ASME Winter Annual Meeting
,
San Francisco, CA
, ASME, pp.
151
155
.
5.
Firmani
,
F.
,
Zibil
,
A.
,
Nokleby
,
S.
, and
Podhorodeski
,
R.
,
2008
, “
Wrench Capabilities of Planar Parallel Manipulators — Part I: Wrench Polytopes and Performance Indices
,”
Robotica
,
26
(
6
), pp.
791
802
.
6.
Mejia
,
L.
,
Simas
,
H.
, and
Martins
,
D.
,
2015
, “
Force Capability in General 3 DOF Planar Mechanisms
,”
Mech. Mach. Theory.
,
91
, pp.
120
134
.
7.
Bosscher
,
P.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Wrench-Based Analysis of Cable-Driven Robots
,”
Proceedings of the IEEE Conference on Robotics and Automation
,
New Orleans, LA
, IEEE, pp.
4950
4955
.
8.
Gouttefarde
,
M.
, and
Gosselin
,
C.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Robot.
,
22
(
3
), pp.
434
445
.
9.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech Rob.
,
12
(
3
), p.
031009
.
10.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
11.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
J. Lab. Robot. Autom.
,
8
(
1
), pp.
17
24
.
12.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
Parallel x-y Manipulator with Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
Proceedings of IEEE Conference on Robotics and Automation
,
Leuven, Belgium
, IEEE, pp.
2295
2300
.
13.
Firmani
,
F.
, and
Podhorodeski
,
R.
,
2004
, “
Force-Unconstrained Poses for a Redundantly Actuated Planar Parallel Manipulator
,”
Mech. Mach. Theory
,
39
(
5
), pp.
459
476
.
14.
Zanganeh
,
K.
, and
Angeles
,
J.
,
1994
, “
Instantaneous Kinematics and Design of a Novel Redundant Parallel Manipulator
,”
Proceedings of the IEEE Conference on Robotics and Automation
,
San Diego
, IEEE, pp.
3043
3048
.
15.
Wang
,
J.
, and
Gosselin
,
C.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
16.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2009
, “
3-PRRR Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace and Singularity Analyses
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1007
1016
.
17.
Cha
,
S.-H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2009
, “
Determination of the Kinematically Redundant Active Prismatic Joint Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1032
1044
.
18.
Ruiz
,
A. G.
,
Santos
,
J. C.
,
Croes
,
J.
,
Desmet
,
W.
, and
da Silva
,
M. M.
,
2018
, “
On Redundancy Resolution and Energy Consumption of Kinematically Redundant Planar Parallel Manipulators
,”
Robotica
,
36
(
6
), pp.
809
821
.
19.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2016
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Robot.
,
31
(
2
), pp.
457
467
.
20.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2018
, “
Kinematically Redundant Planar Parallel Mechanisms: Kinematics, Workspace and Trajectory Planning
,”
Mech. Mach. Theory
,
119
, pp.
91
105
.
21.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
22.
Mejia
,
L.
,
Simas
,
H.
, and
Martins
,
D.
,
2016
, “
Wrench Capability in Redundant Planar Parallel Manipulators With Net Degree of Constraint Equal to Four, Five or Six
,”
Mech. Mach. Theory
,
105
, pp.
58
79
.
23.
Zibil
,
A.
,
Firmani
,
F.
,
Nokleby
,
S.
, and
Podhorodeski
,
R.
,
2007
, “
An Explicit Method for Determining the Force Moment Capabilities of Redundantly Actuated Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1046
1055
.
24.
Firmani
,
F.
,
Zibil
,
A.
,
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
,
2008
, “
Wrench Capabilities of Planar Parallel Manipulators—Part II: Redundancy and Wrench Workspace Analysis
,”
Robotica
,
26
(
6
), pp.
803
815
.
25.
Liu
,
H.
,
Huang
,
T.
,
Kecskeméthy
,
A.
,
Chetwynd
,
D.
, and
Li
,
Q.
,
2017
, “
Force/Motion Transmissibility Analyses of Redundantly Actuated and Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
109
, pp.
126
138
.
26.
Weihmann
,
L.
,
Martins
,
D.
, and
Coelho
,
L.
,
2011
, “
Force Capabilities of Kinematically Redundant Planar Parallel Manipulators
,”
Proceedings of 13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
, IFToMM, p.
8
.
27.
Boudreau
,
R.
,
Nokleby
,
S.
, and
Gallant
,
M.
,
2021
, “
Wrench Capabilities of a Kinematically Redundant Planar Parallel Manipulator
,”
Robotica
, pp.
1
16
.
You do not currently have access to this content.