Abstract

The importance of an untethered microrobotic platform that can operate on high flowrate microfluidic channels for in vitro applications is increasing rapidly. This article presents a method to manipulate a microrobot in a fluidic chip when high flowrates (4 ml/min, 82.304 mm/s) are applied. This method is based on a novel permanent magnet-based diamagnetic levitation configuration. This configuration includes a thin layer of pyrolytic graphite, which is placed just below the microrobot. In this way, microrobot stability and manipulation capability are increased. Also, we aim to increase the longitudinal forces imposed on the microrobot to withstand the drag force proportional to the flowrate. Hence, magnetic field lines are generated more linearly around the microrobot by a different combination of permanent magnets. The proposed magnetic configuration, named “KERKAN configuration,” significantly improves the microrobot’s longitudinal forces. In this configuration, two different ring-shaped ferromagnetic magnets are used. One of the magnets has a smaller diameter than the other magnet. A combination of one smaller and one bigger magnet is placed above and below the microrobot. To validate the advantages of this configuration, analytical and simulation studies are conducted. Their results are then compared with experimental results. Experimental results are on par with analytical and simulation studies. KERKAN configuration has a lower displacement than the next best configuration at the highest flowrate we applied (relatively 3301 μm, %21.8).

References

1.
Lee
,
S.
,
Kim
,
S.
,
Kim
,
S.
,
Kim
,
J.-Y.
,
Moon
,
C.
,
Nelson
,
B. J.
, and
Choi
,
H.
,
2018
, “
A Capsule-Type Microrobot With Pick-and-Drop Motion for Targeted Drug and Cell Delivery
,”
Adv. Healthcare. Mater.
,
7
(
9
), p.
1700985
.
2.
Petrina
,
A.
,
2010
, “
Carbon Nanotubes for Nanomanipulation
,”
Auto. Document. Math. Linguist.
,
44
(
1
), pp.
44
52
.
3.
Ichikawa
,
A.
,
Arai
,
F.
,
Yoshikawa
,
K.
,
Uchida
,
T.
, and
Fukuda
,
T.
,
2005
, “
In Situ Formation of a Gel Microbead for Indirect Laser Micromanipulation of Microorganisms
,”
Appl. Phys. Lett.
,
87
(
19
), p.
191108
.
4.
Turan
,
M.
,
Almalioglu
,
Y.
,
Araujo
,
H.
,
Konukoglu
,
E.
, and
Sitti
,
M.
,
2018
, “
Deep Endovo: A Recurrent Convolutional Neural Network (RCNN) Based Visual Odometry Approach for Endoscopic Capsule Robots
,”
Neurocomputing
,
275
, pp.
1861
1870
.
5.
Urbano
,
R. L.
, and
Clyne
,
A. M.
,
2016
, “
An Inverted Dielectrophoretic Device for Analysis of Attached Single Cell Mechanics
,”
Lab. Chip.
,
16
(
3
), pp.
561
573
.
6.
Xu
,
L.
,
Mou
,
F.
,
Gong
,
H.
,
Luo
,
M.
, and
Guan
,
J.
,
2017
, “
Light-Driven Micro/Nanomotors: From Fundamentals to Applications
,”
Chem. Soc. Rev.
,
46
(
22
), pp.
6905
6926
.
7.
Guo
,
F.
,
Mao
,
Z.
,
Chen
,
Y.
,
Xie
,
Z.
,
Lata
,
J. P.
,
Li
,
P.
,
Ren
,
L.
,
Liu
,
J.
,
Yang
,
J.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
,
2016
, “
Three-Dimensional Manipulation of Single Cells Using Surface Acoustic Waves
,”
Proc. Natl. Acad. Sci. USA
,
113
(
6
), pp.
1522
1527
.
8.
Yan
,
X.
,
Zhou
,
Q.
,
Vincent
,
M.
,
Deng
,
Y.
,
Yu
,
J.
,
Xu
,
J.
,
Xu
,
T.
,
Tang
,
T.
,
Bian
,
L.
,
Wang
,
Y.-X. J.
,
Kostarelos
,
K.
, and
Zhang
,
L.
,
2017
, “
Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy
,”
Sci. Rob.
,
2
(
12
), p.
eaaq1155
.
9.
Petruska
,
A. J.
,
Edelmann
,
J.
, and
Nelson
,
B. J.
,
2017
, “
Model-Based Calibration for Magnetic Manipulation
,”
IEEE. Trans. Magn.
,
53
(
7
), pp.
1
6
.
10.
Xie
,
M.
,
2019
, “
Autonomous Robot-Aided Optical Tweezer System for Biological Cell Manipulation
,”
Int. J. Adv. Manuf. Technol.
,
105
(
12
), pp.
4953
4966
.
11.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS. Appl. Mater. Interfaces.
,
7
(
5
), pp.
3398
3405
.
12.
Go
,
G.
,
Nguyen
,
V. D.
,
Jin
,
Z.
,
Park
,
J.-O.
, and
Park
,
S.
,
2018
, “
A Thermo-Electromagnetically Actuated Microrobot for the Targeted Transport of Therapeutic Agents
,”
Int. J. Control. Autom. Syst.
,
16
(
3
), pp.
1341
1354
.
13.
Jiang
,
G.-L.
,
Guu
,
Y.-H.
,
Lu
,
C.-N.
,
Li
,
P.-K.
,
Shen
,
H.-M.
,
Lee
,
L.-S.
,
Yeh
,
J. A.
, and
Hou
,
M. T.-K.
,
2010
, “
Development of Rolling Magnetic Microrobots
,”
J. Micromech. Microeng.
,
20
(
8
), p.
085042
.
14.
Feng
,
L.
,
Zhang
,
S.
,
Jiang
,
Y.
,
Zhang
,
D.
, and
Arai
,
F.
,
2017
, “
Microrobot With Passive Diamagnetic Levitation for Microparticle Manipulations
,”
J. Appl. Phys.
,
122
(
24
), p.
243901
.
15.
Fu
,
Q.
,
Guo
,
S.
,
Yamauchi
,
Y.
,
Hirata
,
H.
, and
Ishihara
,
H.
,
2015
, “
A Novel Hybrid Microrobot Using Rotational Magnetic Field for Medical Applications
,”
Biomed. Microdevices.
,
17
(
2
), p.
31
.
16.
Feng
,
L.
,
Zhou
,
Q.
,
Song
,
B.
,
Feng
,
Y.
,
Cai
,
J.
,
Jiang
,
Y.
, and
Zhang
,
D.
,
2018
, “
Cell Injection Millirobot Development and Evaluation in Microfluidic Chip
,”
Micromachines
,
9
(
11
), p.
590
.
17.
Hagiwara
,
M.
,
Kawahara
,
T.
,
Yamanishi
,
Y.
,
Masuda
,
T.
,
Feng
,
L.
, and
Arai
,
F.
,
2011
, “
On-Chip Magnetically Actuated Robot With Ultrasonic Vibration for Single Cell Manipulations
,”
Lab. Chip.
,
11
(
12
), pp.
2049
2054
.
18.
Yamanaka
,
T.
, and
Arai
,
F.
,
2018
, “
Self-Propelled Swimming Microrobot Using Electroosmotic Propulsion and Biofuel Cell
,”
IEEE Rob. Auto. Lett.
,
3
(
3
), pp.
1787
1792
.
19.
Bracker
,
G.
,
Xiao
,
X.
,
Lee
,
J.
,
Reinartz
,
M.
,
Burggraf
,
S.
,
Herlach
,
D.
,
Rettenmayr
,
M.
,
Matson
,
D.
, and
Hyers
,
R.
,
2019
,
Modeling of Fluid Flow Effects on Experiments Using Electromagnetic Levitation in Reduced Gravity
,
G.
Lambotte
,
J.
Lee
,
A.
Allanore
, and
S.
Wagstaff
, eds.,
Springer
,
New York
, pp.
171
180
.
20.
Diehl
,
R.
,
Hebestreit
,
E.
,
Reimann
,
R.
,
Tebbenjohanns
,
F.
,
Frimmer
,
M.
, and
Novotny
,
L.
,
2018
, “
Optical Levitation and Feedback Cooling of a Nanoparticle at Subwavelength Distances From a Membrane
,”
Phys. Rev. A.
,
98
(
1
), p.
013851
.
21.
Watanabe
,
A.
,
Hasegawa
,
K.
, and
Abe
,
Y.
,
2018
, “
Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.
22.
Khalil
,
I. S.
,
Magdanz
,
V.
,
Sanchez
,
S.
,
Schmidt
,
O. G.
, and
Misra
,
S.
,
2013
, “
The Control of Self-Propelled Microjets Inside a Microchannel With Time-Varying Flow Rates
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
49
58
.
23.
Khalil
,
I. S.
,
Abass
,
H.
,
Shoukry
,
M.
,
Klingner
,
A.
,
El-Nashar
,
R. M.
,
Serry
,
M.
, and
Misra
,
S.
,
2016
, “
Robust and Optimal Control of Magnetic Microparticles Inside Fluidic Channels With Time-Varying Flow Rates
,”
Int. J. Adv. Rob. Syst.
,
13
(
3
), p.
123
.
24.
Li
,
H.
,
Go
,
G.
,
Ko
,
S. Y.
,
Park
,
J.-O.
, and
Park
,
S.
,
2016
, “
Magnetic Actuated Ph-Responsive Hydrogel-Based Soft Micro-Robot for Targeted Drug Delivery
,”
Smart Mater. Struct.
,
25
(
2
), p.
027001
.
25.
Meng
,
K.
,
Jia
,
Y.
,
Yang
,
H.
,
Niu
,
F.
,
Wang
,
Y.
, and
Sun
,
D.
,
2019
, “
Motion Planning and Robust Control for the Endovascular Navigation of a Microrobot
,”
IEEE Trans. Indus. Inform
,
16
(
7
), pp.
4557
4566
.
26.
Sitti
,
M.
, and
Wiersma
,
D. S.
,
2020
, “
Pros and Cons: Magnetic Versus Optical Microrobots
,”
Adv. Mater.
,
32
(
20
), p.
1906766
.
27.
Demircali
,
A.
,
Erkan
,
K.
, and
Uvet
,
H.
,
2017
, “
A Study on Finding Optimum Parameters of a Diamagnetically Driven Untethered Microrobot
,”
J. Magn.
,
22
(
4
), pp.
539
549
.
28.
Uvet
,
H.
,
Demircali
,
A. A.
,
Kahraman
,
Y.
,
Varol
,
R.
,
Kose
,
T.
, and
Erkan
,
K.
,
2018
, “
Micro-UFO (Untethered Floating Object): A Highly Accurate Microrobot Manipulation Technique
,”
Micromachines
,
9
(
3
), p.
126
.
29.
Demircali
,
A. A.
, and
Uvet
,
H.
,
2018
, “
Stabilization of Microrobot Motion Characteristics in Liquid Media
,”
Micromachines
,
9
(
7
), p.
363
.
30.
Zhong
,
Y.
,
Du
,
R.
, and
Chiu
,
P. W.
,
2015
, “
Tadpole Endoscope: A Wireless Micro Robot Fish for Examining the Entire Gastrointestinal (GI) Tract
,”
HKIE Trans.
,
22
(
2
), pp.
117
122
.
31.
Ceylan
,
H.
,
Giltinan
,
J.
,
Kozielski
,
K.
, and
Sitti
,
M.
,
2017
, “
Mobile Microrobots for Bioengineering Applications
,”
Lab. Chip.
,
17
(
10
), pp.
1705
1724
.
32.
Simon
,
M.
, and
Geim
,
A.
,
2000
, “
Diamagnetic Levitation: Flying Frogs and Floating Magnets
,”
J. Appl. Phys.
,
87
(
9
), pp.
6200
6204
.
33.
Loth
,
E.
,
2008
, “
Drag of Non-Spherical Solid Particles of Regular and Irregular Shape
,”
Powder. Technol.
,
182
(
3
), pp.
342
353
.
34.
Rajagopalan
,
D.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
,
1990
, “
Finite Element Methdos for Calculation of Steady, Viscoelastic Flow Using Constitutive Equations With a Newtonian Viscosity
,”
J. Non-Newtonian. Fluid. Mech.
,
36
, pp.
159
192
.
35.
Tran-Cong
,
S.
,
Gay
,
M.
, and
Michaelides
,
E. E.
,
2004
, “
Drag Coefficients of Irregularly Shaped Particles
,”
Powder. Technol.
,
139
(
1
), pp.
21
32
.
You do not currently have access to this content.